

- - ---

ENVIRONMENTAL ASSESSMENT OF THE PETROECUADOR-TEXACO CONSORTIUM OIL FIELDS

VOLUME I: ENVIRONMENTAL AUDIT REPOR'.

HBT AGRA Limited Engineering & Environmental Services

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069438

CONFIDENTIAL PET 040691

DRAFT ONLY

ENVIRONMENTAL ASSESSMENT OF THE PETROECUADOR-TEXACO CONSORTIUM OIL FIELDS

VOLUME I: ENVIRONMENTAL AUDIT REPORT

Prepared For:

PETROECUADOR-TEXACO Consortium

Prepared By:

HBT AGRA Limited

CALGARY

ALBERTA

October, 1993

CC00222

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069439

TABLE OF CONTENTS

PART 1 -	INTRODUCTION
1.1	BACKGROUND
1.2	SCOPE OF WORK
1.3	LAYOUT OF REPORT
PART 2 -	BIOPHYSICAL OVERVIEW
2.1	INTRODUCTION
2.2	CLIMATE
2.3	TOPOGRAPHY
2.4	BEDROCK GEOLOGY AND SURFICIAL GEOLOGY 2-1
2.5	SOILS
2.6	VEGETATION
2.7	WILDLIFE RESOURCES
	2.7.1 Endangered Species
2.8	SURFACE WATER
2.9	REFERENCES
PART 3 -	HISTORICAL REVIEW
3.1	INTRODUCTION
3.2	METHODOLOGY
3.3	RESULTS
PART 4 -	REGULATORY REVIEW
4.1	INTRODUCTION
4.2	METHODOLOGY
4.3	RESULTS
	4.3.1 Ecuadorian Regulations
	4.3.2 Operational Practices in Tropical Rainforest Areas
4.4	COMPLIANCE ISSUES FOR OIL FIELD DEVELOPMENT
	AND OPERATIONS

i

- ---

TOC.VI

CA1069440

CA1069440

Page

TABLE OF CONTENTS (CONTINUED)

PART 5 - I	FACILITY AUDIT
5.1	INTRODUCTION
5.2	METHODOLOGY
	5.2.1 Pre-Audit Questionnaire
	5.2.2 Facility Audit
5.3	SITE DESCRIPTIONS
	5.3.1 Lago Agrio
	5.3.2 Shushufindi
	5.3.3 Sacha
	5.3.4 Auca
5.4	OVERVIEW OF FACILITY OPERATIONS
	5.4.1 Process
	5.4.2 Central Facilities
	5.4.2.1 Lago Agrio
	5.4.2.2 Shushufindi
	5.4.2.3 Sacha
	5.4.2.4 Auca
5.5	SUMMARY OF FACILITY AUDIT OBSERVATIONS
	5.5.1 Production Facility Management
	5.5.1.1 Air Emissions
	5.5.1.2 Water/Wastewater Discharge
	5.5.1.3 Waste Handling, Storage, Transportation and Disposal 5-11
	5.5.1.4 Material Handling and Storage
	5.5.1.5 Storage Tanks
	5.5.1.6 Use and Disposal of Produced Gas
	5.5.1.7 Containment and Control of Crude Oil Spills 5-13
	5.5.1.8 Radioactive Materials
	5.5.1.9 Noise
	5.5.1.10 Disposal of Produced Water
	5.5.1.11 Disposal of Tank Bottoms and Residual Oil
	5.5.2 Well Site Management
	5.5.3 Pipeline Management
5.6	SUMMARY OF AUDIT FINDINGS
	5.6.1 Compliance of Operational Practices with Ecuadorian Law 5-16 5.6.2 Conformance of Operational Practices with Typical Operational
	Practices in Tropical Rainforest Areas

ü

TOC.V1

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069441

CONFIDENTIAL PET 040694

CA1069441

<u>Page</u>

- · · ·

TABLE OF CONTENTS (CONTINUED)

PART 6 - 5	SITE AS	SSESSMENT		6-1
6.1	NTR	DUCTION		6-1
6.2		ODOLOGY		
0.2	6.2.1	Site Selection		
	6.2.2	Historical Review		
	6.2.3	Field Survey		
	6.2.4	Soil and Water Sampling		
	6.2.5	Laboratory Analysis		
6.3	EXIST	ING LEVELS OF SURFACE DISTURBANCE		
	6.3.1	Roads		6-6
	6.3.2	Well Sites		6-8
	6.3.3	Production Stations		6-8
	6.3.4	Camps and Supply Depots		. 6-12
	6.3.5	Pipelines		. 6-12
	6.3.6	Transmission Lines		
6.4		TNG LEVELS OF CONTAMINATION		
	6.4.1	Site Assessment Observations		. 6-12
		6.4.1.1 Well Sites		
		6.4.1.2 Flowlines		
		6.4.1.3 Production Stations		
		6.4.1.4 Secondary Pipelines		
		6.4.1.5 Roads		
	6.4.2			
		6.4.2.1 Soil Samples		
		6.4.2.2 Water Samples		
6.5		ARY OF IMPACTS		
	6.5.1	Well Sites		
	6.5.2	Production Stations	••••	. 0-24
PART 7 -	SURFA	CE WATERS		7-1
7.1	INTRO	DUCTION		7-1
7.2	METH	IODOLOGY		7-1
7.3	REGIO	ONAL CHARACTERISTICS OF STREAMS AND WATER	USERS	. 7-2
7.4	EFFL	UENTS AND RIVERS IN THE SHUSHUFINDI FIELD		7-2
	7.4.1	Effluents		7-2
	7.4.2	Rio Niutshinac, Rio Shushufindi, and Rio Eno7.4.2.1Rio Niutshinac		
TOC.VI		iii	CON	FIDENTIAL T 040695

<u>Page</u>

TABLE OF CONTENTS (CONTINUED)

	7.4.2.2 Rio Shushufindi
	7.4.2.3 Rio Eno
7.5	EFFLUENT IN THE AGUA RICO FIELD
7.6	EFFLUENTS AND RIVERS IN THE SACHA FIELD
	7.6.1 Effluents
	7.6.2 Rio Jivino Rojo, Rio Plandayacu and Rio Blanco
	7.6.2.1 Rio Jivino Rojo
	7.6.2.2 Rio Plandayacu
	7.6.2.3 Rio Blanco
7.7	EFFLUENT IN THE YUCA FIELD
7.8	EFFLUENT AND RIVER IN THE CONONACO FIELD
	7.8.1 Effluent
	7.8.2 Rio Shiripuro
7.9	EFFLUENTS AND RIVERS IN THE AUCA FIELDS
	7.9.1 Effluents
	7.9.2 No Name River(a), No Name River(b) and Rio Tiputini 7-15
	7.9.2.1 No Name River(a)
	7.9.2.2 No Name River (b)
	7.9.2.3 Rio Tiputini
7.10	EFFLUENTS AND RIVERS IN THE LAGO AGRIO FIELD
	7.10.1 Effluents
	7.10.2 Rio Teteye and No Name River(c)
	7.10.2.1 Rio Teteye
	7.10.2.2 No Name River(c)
7.11	
	AND RIO AGUA RICO
	7.11.1 Effluents
	7.11.2 Rio Agua Rico
7.12	•
7.13	
PART 8 - 3	SUBSURFACE SOILS AND GROUNDWATER
8.1	INTRODUCTION
8.2	REGIONAL GEOLOGY AND HYDROGEOLOGY
8.3	METHODOLOGY
	8.3.1 Soil Sampling Procedures
	8.3.2 Groundwater Sampling Procedures
	8.3.3 Aquifer Testing Procedures
	8.3.4 Laboratory Analysis of Soil and Water Samples
	0.5.4 Laboratory Anarysis of som and water samples

iv

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069443

CONFIDENTIAL PET 040696

Page

TABLE OF CONTENTS (CONTINUED)

TOC.VI

Page

8.4	SUBSURFACE CONDITIONS
	8.4.1 Shushufindi Field
	8.4.2 Aguarico Field
	8.4.3 Sacha Field
	8.4.4 Auca Field
	8.4.5 Cononaco Field
	8.4.6 Lago Agrio Field
	8.4.7 Guanta Field
8.5	QUANTITATIVE ANALYSIS
	8.5.1 Shushufindi Field
	8.5.2 Aguarico Field
	8.5.3 Sacha Field
	8.5.4 Auca Field
	8.5.5 Cononaco Field
	8.5.6 Lago Agrio Field
	8.5.7 Guanta Field
. .	8.5.8 Background Groundwater Samples
8.6	SUMMARY OF IMPACTS TO THE SUBSURFACE
8.7	REFERENCES
	SUMMARY OF ENVIRONMENTAL LIABILITIES
9.1	INTRODUCTION
9.2	PRIORITIZED RANKING OF ENVIRONMENTAL LIABILITIES
	9.2.1 Contaminant Rating
	9.2.2 Site Sensitivity Rating
	9.2.3 Environmental Risk Potential
DADT 10	CONCLUSIONS AND RECOMMENDATIONS
10.1	
10.1	ASSESSMENTS
	10.1.1 Well Site Assessment Recommendations
	10.1.2 Production Station Assessment Recommendations
10.2	•
10.2	AUDIT
PART 11	• CLOSURE

v

CONFIDENTIAL PET 040697

CA1069444

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES

Table 1-1	The PETROECUADOR-TEXACO Consortium Production
•	Stations and Well Sites
Table 2-1	Soils of the Study Area
Table 3-1	Well Site Completion History
Table 4-1	Ecuadorian Environmental Laws and Regulations Relevant
	to Oil Field Operations During the Period 1964-1990
Table 4-2	Environmental Legislation Development in Ecuador
	PETROECUADOR-TEXACO Oriente Oil Fields
Table 4-3	Typical Exploration Drilling Practices for the
	Period 1964 to 1990
Table 4-4	Typical Development and Production Practices for the
	Period 1964 to 1990
Table 4-5	Summary of Compliance Issues Related to Ecuadorian
	Law as a Result of Oil Field Development and Operations 4-11
Table 5-1	The Association Between the Four Camps, Where the
	Facility Audits were Conducted and the 22 Production Stations 5-3
Table 5-2	Summary of Operational Practices for the Oil Fields for
	the Period Prior to 1990 and After 1990
Table 5-3	Summary of Compliance Issues Related to
	Ecuadorian Law as a Result of Oil Field
	Development and Operations
Table 5-4	Summary of Conformance Issues Related to Typical
	Development and Production Practices for Tropical
	Rainforest Areas
Table 6-1	Estimated Area of Forest Cleared Within the Concession
	Area as a Direct Result of Oil Field Development and
	Production Activities
Table 6-2	Description of Erosion at Well Sites
Table 6-3	Description of Erosion at Production Stations
Table 6-4	Scoring System Used to Rate Potential Environmental
	Impacts
Table 6-5	Environmental Impact Rating for Contamination at Well
	Sites
Table 6-6	Environmental Impact Rating for Contamination
	at Production Stations

vi

TOC.VI

- -----

CA1069445

CONFIDENTIAL PET 040698

TABLE OF CONTENTS (CONTINUED)

Summary of Effluent Sample Sources and Receiving
River/Land in the PETROECUADOR-TEXACO Oriente Oil Fields 7-3
Summary of Effluent Quality Data for the
PETROECUADOR-TEXACO Oriente Oil Fields, June 1993 7-4
Summary of Water Quality Data for Rivers in the
PETROECUADOR-TEXACO Orient Oilfields - June 1993 7-7
Summary of Impacts on Water Quality
Soil and Groundwater Hydrocarbon Test Results for
Test Pits and Borings Located on Well Sites and Production
Stations PETROECUADOR-TEXACO Consortium
Analytical Results for Groundwater Collected from
Monitoring Well and Production Pond Seeps
PETROECUADOR-TEXACO Consortium
Analytical Test Results for Groundwater Collected from
Water Wells and Springs PETROECUADOR-TEXACO
Consortium
Summary of Site Conditions and Rating of Site
PETROECUADOR-TEXACO Consortium
Well Site Environmental Risk Potential
Environmental Risk Potential for Production Stations
Prioritized Ranking of Recommended Actions for Assessed
Well Sites
Prioritized Ranking of Recommended Actions for
Production Stations

LIST OF FIGURES

Figure 1-1	Location of Study Area
Figure 5-1	Production Process Diagram PETROAMAZONAS Oriente
	Field
Figure 6-1	Location of Samples Points for Soil, Effluent, Surface
	Water and Groundwater
Figure 6-2	Comparison of Well Site Completion History with
-	Assessed Well Sites

TOC.VI

vii

CONFIDENTIAL PET 040699

TABLE OF CONTENTS (CONTINUED)

LIST OF PHOTOS

Photo 7-1	River Rio Niutshinac at site R3d showing typical stream
	morphology and water use in the study area
Photo 7-2	Produced water from the southwest production station flowing along an oil
	stained drainage channel before it enters Rio Niutshinac at site E2 7-9
Photo 7-3	Vegetation showing stress due to the effluent discharged
	from the Agua Rico Central Production station (site E9)
Photo 7-4	A drainage ditch containing oily wastes and produced water released from
	the Sacha Central production station (site E19)
Photo 7-5	Effluent from Auca South station entering a poorly defined
	stream before discharging into No Name River(b) about
	50 m upstream of site R29d
Photo 7-6	No Name River(b) at site R29d
Photo 7-7	Produced water from the Lago Agrio North station flowing
	into the forest immediately downstream of the outlet (site E34)
	before entering No Name River(c)
Photo 7-8	Produced water discharged to a wetland/forest at the
	Atacapi Central station and typical for the Central stations
	at Parabuacu and Guanta
Photo 8-1	Backhoe used to excavate test pits at Shushufindi Field
Photo 8-2	A slotted interval of 0.3 meters was cut in the PVC prior
	to installing the piezometer
Photo 8-3	A nylon stocking was used to cover the slotted interval of
	the PVC pipe to act as a filter
Photo 8-4	Petroleum hydrocarbon layer on the groundwater
	encountered in testpit TP1 at Shushufindi Central Station 8-8
Photo 8-5	Crude oil in soil excavated near production pond at Sacha
	North #1 Station (TP1)
Photo 8-6	Soil profile exposed in cliff near Auca Central Station 8-10
Photo 8-7	Production pond at Auca South Station located on bluff
	adjacent to flare stack. Produced water is seeping at
	the base of the bluff
Photo 8-8	Production water seep located at toe of the slope below a
	pond at Auca Central Station. The location of a piezometer
	is indicated on the photo
	-

TOC.VI

.

.

viii

TABLE OF CONTENTS (CONCLUDED)

LIST OF APPENDICES

APPENDIX A	Summary of Pre-Assessment Findings
APPENDIX B	Facility Audit Protocols
APPENDIX C	Selection of Well Sites, Flowlines, Pipelines and Production Facilities
APPENDIX D	Field Data Recording Sheets for Production Facilities,
	Well Sites and Pipelines
APPENDIX E	Physical Impacts Recorded for Assessed Well Sites and Production Stations
APPENDIX F	Contaminant Observations for Assessed Well Sites, Production Stations
	and Secondary Pipelines
APPENDIX G	Sample Summary and Analytical Results
APPENDIX H	Geologic Test Pit and Boring Logs
APPENDIX I	Recommended Disposal Criteria for Oily Wastes
APPENDIX J	Phase I Assessment Photographs

TOC.VI

.

~

CONFIDENTIAL PET 040701

PART 1 - INTRODUCTION

The PETROECUADOR-TEXACO Consortium of Quito, Ecuador has selected HBT AGRA Limited to undertake an environmental assessment of the consortium oil fields located in the Oriente District of Ecuador (Figure 1-1).

The evaluation has focused on operational practices for the period 1964 to 1990 which coincides with the period Texaco Petroleum Company acted as operator for the consortium.

Hydrocarbon development and production activities have caused environmental impacts in this part of the Amazon Region, and the consortium proposed to identify these impacts and to measure compliance with environmental regulations in effect during the period 1964 to 1990.

The objectives of this study are as follows:

- To carry out an integral environmental audit of the PETROECUADOR-TEXACO Consortium oil fields to determine their current environmental status.
- To determine possible environmental impacts generated by oil field development in the Consortium concession area, and to determine possible causes of these impacts.
- To determine actions and measures to be applied in order to reduce and control impacts caused by oil field development and production activities.
- To determine remediation and reclamation measures and to provide an estimate of costs of these measures.

The results of this study are presented in two volumes:

Volume I: Environmental Assessment Report

This report provides a summary of the results of the environmental assessment and a description of environmental liabilities within the study area.

Volume II: Environmental Management Plan

This report provides a description of remediation options including recommendations for the most feasible options and for remediation implementation.

CONFIDENTIAL PFT 040702

PART-I.VI

1-1

Earth & Environmental Group

1.1 BACKGROUND

The Texaco and Gulf Oil joint venture concession dates back to 1964. The original lease agreement was altered in 1974 when Texaco relinquished much of the original acreage and retained its current 479,974 hectares. On August 6, 1973 Texaco and Gulf Oil signed a contract with the Ecuadorian government for the exploration and production of hydrocarbons in the Oriente Basin. On June 6, 1974 the Corporacion Estatal Petrolera Ecuatoriana (CEPE- today known as PETROECUADOR) acquired 25% of the rights and obligations of the Texaco-Gulf joint venture agreement with the following participation: CEPE = 25%, Texaco = 37.5% and Gulf = 35.7%. In January 1977, CEPE (today PETROECUADOR) acquired the rights and obligations of Gulf Oil (37.5%) thereby increasing its participation in the consortium to 62.5%.

The oil field operations of the Consortium were conducted to June 30, 1990 by Texaco Petroleum Company. Since then, the field operations have been managed by PETROAMAZONAS, an Ecuadorian government company.

The PETROECUADOR-TEXACO Consortium operated 15 petroleum camps and 22 production stations in the Oriente (Table 1-1). The concession is located in the Provinces of Sucumbrios and Napo of the Amazon region of Ecuador. The oil fields comprise approximately 325 wells of which approximately 232 are currently producing. Most oil is recovered by artificial lift, however two fields (Sacha and Shushufindi) have secondary recovery by water injection.

1.2 SCOPE OF WORK

The scope of work for this project was established by an Environmental Audit Technical Committee comprising representatives of PETROECUADOR, TEXACO, PETROAMAZONAS and the Ministry of Energy of the Government of Ecuador. This Technical Committee established the terms of reference for this study, and oversaw all technical aspects of the field programs and final approval of the reports.

A phased approach was used to undertake this study.

Phase I involved a Biophysical Survey, Historical Review, Regulatory Review, Facility Audit and Site Reconnaissance. This phase identified the potential for contamination and the type of contamination that may be present from visual observations and limited chemical characterization of the sites inspected.

Phase II involved groundwater and subsurface investigations on those sites where contamination or high potential for contamination was identified during Phase I.

PART-1.VI

1-3

CONFIDENTIAL PET 040704

TABLE 1-1

The PETROECUADOR-TEXACO Consortium Production Stations and Well Sites

Oil Field	Production Station	Number of Wells in Field
Lago Agrio (LA)	North Production Station Central Production Station	37
Parahuacu (PH)	Production Station	5
Atacapi (AT)	Production Station	6
Guanta (GU)	Production Station	9
Aguarico (AG)	Production Station	10
Shushufindi (SSF)	North Production Station Central Production Station South Production Station Southwest Production Station Water Injection Station	79
Sacha (SA)	North #2 Production Station North #1 Production Station Central Production Station South Production Station	120
Culebra (CU)	Production Station	2
Yulebra (YB)	Production Station	3
Yuca (YU)	Production Station	9
Yuca Sur (YUS)		1
Auca (AU)	Central Production Station South Production Station	27
Auca Sur (AUS)	Production Station	2
Rumiyacu (RM)		1
Cononaco (CN)	Production Station	13
Dureno (DU)	Production Station	1
TOTAL 16	23	325

1-4

PART-1.V1

CONFIDENTIAL PET 040705

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069452

1.3 LAYOUT OF REPORT

This report is organized in the following manner:

- Section 2 provides an overview of existing biophysical conditions within the study area.
- Section 3 provides a description of site history including land use and spill history for production stations, well sites, flowlines and pipelines.
- Section 4 provides a summary of the regulatory review which was used to form the basis for assessing compliance of the oil field operations.
- Section 5 provides the findings of an audit which examined operational practices for production facility management, well site management and pipeline management.
- Section 6 summarizes the results of a site reconnaissance to all the production stations and 50 percent of the well sites within each oil field, and documents existing levels of contamination.
- Section 7 provides a description of surface waters within the study area, including effluent sources and existing levels of contamination.
- Section 8 provides a description of groundwaters within the study area including existing levels of contamination in subsoils and groundwater.
- Section 9 provides a summary of the major environmental liabilities.
- Section 10 provides a priority list of the major environmental liabilities and recommendations for further assessment and mitigation.

PART-1.V1

CONFIDENTIAL PET 040706

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

PART 2 - BIOPHYSICAL OVERVIEW

2.1 INTRODUCTION

This section provides a brief description of biophysical resources within the study area. The following sources of information were used:

- published reports;
- air photos at a scale of 1:60,000 (July 1990); and
- field studies undertaken from May 19 to June 17, 1993.

During the field studies, observations were made on landforms, soils and vegetation within the study area. Soil and surface water samples were also collected from several locations to characterize background values. A detailed description of the surface water sampling program is given in Section 7.0.

2.2 CLIMATE

The climate of the Oriente District of Ecuador is tropical. Tropical climates are defined as "climatic regimes characterized by high temperatures (minimum average of 18°C) and heavy rainfall (yearly minimum above 1.5 metres) throughout the year" (New Lexicon Websters Dictionary).

Rainfall in the Oriente is generally heavy, ranging from 2,000 mm to 5,000 mm annually. There is no dry season in the Oriente (Library of Congress 1979). In most years, soils are dry for less than three consecutive months. Mean temperature in the Oriente is about 24°C (Sociedad Ecuatoriana de la Cienca del Suelo 1986).

2.3 TOPOGRAPHY

The study area lies within the Amazonia geographic region. The topography of this region is composed of gently sloping land and flat valleys that stretch from the eastern edge of the Andes to the headwaters of the Amazon River (Sociedad Ecuatoriana de la Cienca del Suelo 1986).

2.4 BEDROCK GEOLOGY AND SURFICIAL GEOLOGY

The Oriente Basin lies within the trend of Andean foreland basins that extend along the length of western South America east of the Andes. The basin is bounded by exposed Precambrian rocks of the Guyana shield located to the east, and by fault-bounded ridges of exposed Jurassic through Tertiary rocks to the west. The sedimentary section in the basin thins against basement

PART-2.VI

2-1

arches to the north in Columbia and to the south in Peru. The basin forms a broad asymmetrical syncline, with a maximum thickness exceeding 10,000 meters. The axis of the basin plunges to the south-southwest. The Cretaceous Napo and Hollin formations are the oil producing formations in the basin, and most producing oil wells in the basin have been completed at depths ranging from 2,900 to 3,100 meters (Smith, 1989).

A Miocene to Holocene section of continental alluvial deposits are the primary sedimentary fill of the foreland basin and are exposed at the surface (Tschopp, 1956). The Tertiary section comprises the upper 2,500 to 5,000 meters of the basin fill, and is composed of fine to coarse clastic sediments of brackish to fresh-water facies. The soil profile along the Aguarico River developed on this Tertiary Section. Late Tertiary (Miocene through Quaternary) Curaray -Conambo Formation, Miocene Chambira Ushpa Formation, and the Oligocene Arajuno Pastaza Formation are exposed at the surface in the Oriente Basin. The Arajuno Pastaza Formation occurs near the confluence of the Rio Napo and Rio Coca, and consists of pebbly sandstones with some conglomerates in the lowermost portion, and red to red-brown clay or sandy clay in the upper portion. The Chambira Ushpa Formation is composed of sandstones in the lower portions, and of claystones with interbedded tuffaceous sandstones in the upper portion. The Chambira Formation occurs in the Auca Field and in the southern portion of the Sacha Field. The Curaray Formation which is exposed in the Shushufindi, Aguarico, and Lago Agrio Fields, consists of well-bedded, light-gray or reddish brown clays alternating with fine to medium grained sandstones. The abrupt vertical and horizontal lithologic facies changes in the Tertiary and Quaternary Sections, deep weathering of the parent rock material, and rarity of index fossils, make correlation of the formations very difficult.

2.5 SOILS

¢

•

Soils in the Oriente are formed on alluvium volcanic and sedimentary materials. A summary of the main soil types are given in Table 2-1 and in the following descriptions.

Tropaguepts (Map Unit I a 1)

These are poorly drained soils found on level terraces, alluvial marshes and depressional areas. They are formed on recent alluvium (muds, clays) over older clayey sediments. These soils are permanently saturated with water (waterlogged), gleyed (grey colour) and acid. They have an organic horizon (fibrous material) over reddish to yellow clay that is grey with depth.

Distrandepts (Map Unit I d 3)

These are soils formed on recent volcanic ash deposited over older deposits of ash. They are moist to wet and of medium fertility. These soils are characteristically brown stratified mud and sand and are found on level to undulating topography.

PART-2.V1

CA1069455

CONFIDENTIAL

PET 040708

TABLE 2-1

Soils of the Study Area

Terrain Order Sub-order Great Group Description				
Alluvial plains	Inceptisols	Andepts	Dystrandepts (I d 3 - I f 3)	Volcanic projections; recent ash
Floodplains	Enceptisols	Aguepts	Tropaquepts (I a 1)	Sedimentary, allvuial clay over organic horizon
Hilly	Inceptisols	Tropepts	Dystropepts (If2)	Sedimentary, ancient, red compact clay, shallow, high toxic Al contents
Hilly plateau	Inceptisols	Tropepts	Dystropepts (If 3)	Sedimentary, recent, clay, compact, poorly drained, high toxic Al contents

Sources: Fundacion Natura (1988); Instituto Geogrfico Militar (1986)

PART-2.VI

:

.

CONFIDENTIAL PET 040709

•

CA1069456

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Distropepts (Map Units I f 2 and I f 3)

These are soils formed on sedimentary materials on undulating to hilly topography. They are moist to very moist, are leached with low fertility. They have a high clay content with a high content of aluminum.

2.6 **VEGETATION**

The Oriente is located within the Amazon Basin, which is known for its biological diversity. It is estimated that the lowland forests of the Oriente contain between 9,000 and 12,000 species of vascular plants. The Amazon Basin has been studied in a variety of areas, particularly in Brazil. However, very little is known specifically about the Oriente area in Ecuador. Therefore, only general information about the vegetation resources of the Amazon is available for this report.

The Amazon is characterized by its richness in diverse fauna and flora. Riparian vegetation and forests are found in the Oriente area. Riparian vegetation is dominant where regular flooding occurs on alluvial terraces adjacent to the rivers and streams. The extent of the riverine vegetation varies based on slope, proximity to the river channel, presence of bedrock and the frequency of flooding. The riparian zone is generally covered by a patchwork of low, dense vegetation, topped by scattered tall trees. Characteristically the trees are covered with lianas. The low areas contain a number of species of shrubs, herbs, lianas, and herbaceous vines. Grasses and ferns may also be common. The concentration and distribution of these species is influenced by localized light conditions. Flooding disturbance maintains the grasses and "liana forest" typical of the riparian zone.

Forests merge into the riparian zone. Adjacent to the riparian zone, these forests are affected by extreme flood events and represent a transition between riparian vegetation and upland forests. Plants typically found in forests include shrubs, lianas, hemiepiphytes (plants which germinate of a host tree and send roots to the ground), epiphytes (orchids, aroids, and boimeliads), herbs and mosses, as well as a wide variety of tree species. Of the tree species found in Ecuador, the following have some commercial value: cedar, sisin, walnut, mahogany, laurel of Puna, mountain laurel, oak, alder, canelo, arrayan, cherry, willow, eucapyptus, balsa wood, lignum-vitae, and myrtle. The trees range from 30 to 50 m high, and the canopy is closed (Cabrera and Willink 1973).

2.7 WILDLIFE RESOURCES

Many wildlife species are endemic to Ecuador, or the Amazon Basin. Because many areas of the Amazon experience prolonged flooding, the fauna has adapted to living in water or in treetops. For example, many species of monkeys, marsupials, birds, ants, and molluscs have adapted to treetop living.

PART-2.V1

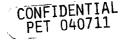
CONFIDENTIAL PET 040710

CA1069457

A wide variety of monkeys are found in Ecuador, including the Three Banded (Douroucouli), Night (Aotus), Bald Ouakari (Cacajao), Dusky Titi (Callicebus), Silvery/Black Marmoset (Callithrix), and howler (Aloutta belzebul) monkeys. The major carnivores in Ecuador include the puma, jaguar, coatimundi, fox, kinkajou, otter, peccary, raccoon, skunk, and weasel. Rodents are represented by several species of squirrels, the spotted cavy, agouti, and numerous rats. Herbivores are represented by small South American deer, the pudu, other species of deer (Odocoeilus) and tapir. Characteristic aquatic mammals include the manatee (Tricherus inunguis), the Boutu or Inia (Inia geoffroyensis) and the tucuxi (Sotalia pallida).

Jungle birds have been divided into categories on the basis of their preferred habitat in the canopy - low, medium and upper. Species of special interest occurring in Ecuador include a wide variety of hummingbirds (*Trochilidae*), scarlet macaw, parrots, parakeets (*Psittacidae*), toucans (*Ramphastidea*), cuckoos (*Cuclidae*), antbirds (*Formicaridae*), blue-crowned motmot, belted kingfisher, and raptors such as the great curassow and *Harpia*.

As with the mammals, reptiles and amphibians exhibit significant adaptations to living in trees or in water. Representatives of these species include a wide variety of turtles, lizards, alligators, chameleons, snakes and crocodiles.


Other species of interest, for which there is little known information, include fish and aquatic organisms such as molluscs, insects and bats (Cabrera and Willink 1973).

2.7.1 Endangered Species

Several species that are considered to be endangered include the following (Library of Congress 1979):

Callimico goeldii Alouatta villosa Tapirus bairdii Cacajar sp. Vultur gryphus Panthera onca Pharamachrus mocinno mocinno Priodontes giganteus Tremoritos giganteus Pteronura brasiliensis Felis pardalis Goeldi's mamoset Howler monkey Central American tapir Uakari Andean condor Jaguar Resplendant quetzal Giant armadillo Speactacles bear Giant otter Ocelot

PART-2.VI

SURFACE WATER

The study area is drained by one main river system, the Rio Napo which is a tributary of the Rio Amazonas. Major tributaries of the Rio Napo are the Rio Coca and the Rio Aguarico. Tributaries of the Rio Aguarico which cross the study area include the Rio Teteye, Rio Eno, Rio Dureno, and Rio Shushufindi. Tributaries of the Rio Coca which cross the study area are the Rio Yanayacu, Rio Jivino, Rio Curiyacu, Rio Rumijacu, Rio Tiputini and Rio Tivacuno.

The Rio Napo and Rio Aguarico are the largest rivers and are about 150 - 200 m wide. The Rio Eno, Rio Tiputino and Rio Shiripuro are about 30 m wide. Most of the other rivers are less than 10 m wide. All of the rivers generally flow in an easterly or southeasterly direction.

2.9

2.8

REFERENCES

- Cabrera A.L. and A. Willink. 1973. Biogeographica de America Latina. Programa Regional de Derarrollo Científico y Ternologico, Departamento de Asuntos Científicos. Secretaria General de la Organización de los Estados Americanos. Washington, D.C.
- Fundacion-Natura. 1988. Development Policy Issues for Ecuadors Amazonia. Paper prepared for the World Bank, Quito.
- Instituto Geografico Militar. 1986. Sociedad Ecuatoriana de la Cienca Del Suelo. Pubicancio Auspiciada por Clirsen - Fertisa E.I.G.M.
- Library of Congress. 1979. Draft Environmental Report on Ecuador. Science and Technology Division, Library of Congress, Washington, D.C.
- Smith, L.R. 1989. Regional Variations in Formation Water Salinity, Hollin and Napo Formations (Cretaceous), Oriente Basin, Ecuador. American Association of Petroleum Geologists. Bulletin V73: 757-776.
- Tschopp, H.J. 1956. Upper Amazon Basin Geological Province, Educador. In: W.F. Jenks (Ed.) Handbook of South American Geology; Geologist Society of America, Memoir 65: 253-263.

PART-2.V1

CA1069459

CONFIDENTIAL PET 040712

3.1 INTRODUCTION

The objective of the historical review was to obtain information on the development, production and environmental history of the oil fields. This information can then be used to identify potential environmental liabilities and to determine the types of substances used in the operation and maintenance of the sites.

3.2 METHODOLOGY

The historical review used a number of different sources of information:

J.

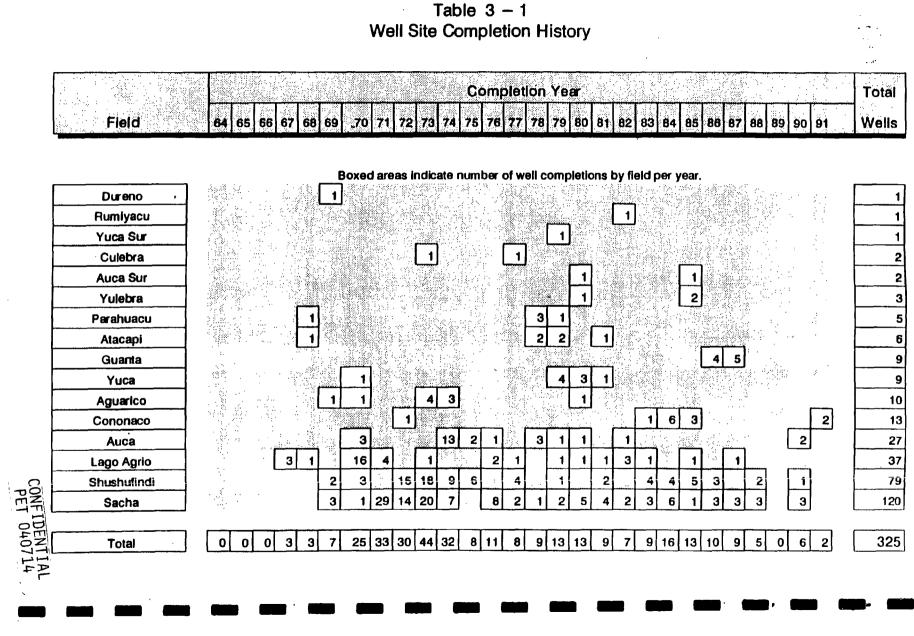
- file records from Ecuadorian Department of National Hydrocarbons;
- file records from PETROECUADOR; and
- July 1990 air photos at a scale of 1:60,000.

This information was collected and reviewed and the following information was extracted and summarized:

- well site identification;
- well status;
- well spud date;
- well completion date;
- well production date;
- cumulative well production to June 10, 1990;
- post 1990 well site workover records;
- 1973 to 1990 spill records; and
- previous environmental assessment documentation.

3.3 **RESULTS**

Information was obtained on the current well status, well spud date, well completion date, well production dates and cumulative well production to June 1990 for all 325 well sites within the study area. This information is given in Table A-1, Appendix A. A summary of well site completion history is given in Table 3-1. Approximately 37% of the well sites are located in the Sacha field, and 24% of well sites are located in the Shushufindi field. The majority of wells were completed during the period 1970 to 1979 and levelled off during the period 1980 to 1990. The first well sites were completed in Lago Agrio field in 1967. There were no well completions prior to 1967.


PART-3.VI

3-1

Earth & Environmental Group

1

PET 040713

•••

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069461

Information was also collected on those wells that were subjected to work-overs after June 1990 (Table A-2, Appendix A). At those particular wells, production fluids from the workover may have been added to fluids already present in the pits that were produced prior to 1990. At those sites, it will not be possible to distinguish between the contamination in the pits from treatment fluids and drilling muds produced prior to 1990 from that produced after 1990. The data indicates that 71 well sites were serviced in 1990, 17 in 1991, 22 in 1992 and 3 in 1993.

The historical review also included compilation of available spill records (Tables A-2, and A-3, Appendix A). These records were provided by the Ecuadorian Department of National Hydrocarbons and PETROECUADOR. Information recorded included location (well site), spill date, gross volume of spill, volume recovered, method of clean-up, cause of spill and natural resource affected by the spill. During the period 1973 to 1990, spills were recorded at 93 well sites and 10 production stations.

Previous environmental documentation was limited to that available from the Ecuadorian Department of National Hydrocarbons. The Department of National Hydrocarbons had undertaken an assessment of site conditions in 1987. Information was recorded for 202 (61%) of the 325 well sites in the concession (Table A-2, Appendix A). At each well site assessed, site condition was rated on a three point scale. The condition rating was based on presence of oil spills, presence of oil stains around well head, and whether the well site had been levelled and gravelled. The pit size at each well site was also noted. The adjacent land use was also recorded according to four different categories.

PART-3.VI

CONFIDENTIAL PET 040715

CA1069462

A review of Ecuadorian laws and regulations was undertaken to provide a basis for assessing compliance of the oil field operations. The specific objectives of the regulatory review are as follows:

- to specify the public sector institutions that administer use and management of petroleum resources; and
- to provide a summary of environmental laws and regulations in effect during the period of involvement of Texaco in the PETROECUADOR-TEXACO Consortium.

4.2 METHODOLOGY

Ecuadorian regulations pertinent to the operations of the oil fields that were reviewed are given in Table 4-1.

TABLE 4-1

Ecuadorian Environmental Laws and Regulations Relevant to Oil Field Operations During the Period 1964-1990

- 1. Concession Agreement, Decree No. 205 A Ord. No. 186 (February 21, 1964).
- 2. Hydrocarbon Law No. 1459 (September 27, 1971).
- 3. Contract with Texaco-Gulf (June 6, 1972).
- 4. Supreme Decree No. 925 (August 4, 1973).
- 5. Law on prevention and control of Environmental Pollution. Supreme Decree 374 (May 21, 1976) Register No. 530 (April 10, 1974).
- 6. Hydrocarbon exploration and exploitation regulations; or No. 530 (April 10, 1974).
- 7. Codification of Hydrocarbon Law, Decree No. 2967 (November 6, 1978).
- 8. Reform to the Hydrocarbon Law Decree No. 101 (August 19, 1982).
- 9. Law of Hydrocarbons No. 19775 (June 6, 1983).
- 10. Law of Hydrocarbons No. 19779 (June 7, 1983).
- 11. Regulation for the Prevention and Control of Environmental Pollution Related to Water Resources, Decree No. 2144 or No. 204 (June 5, 1989).

The first exploration wells were completed in the PETROECUADOR-TEXACO Consortium

PART-4.VI

4-1

DRAFT

CA1069463

PET 040716

concession area in 1967 and brought into production in 1973. This drilling activity predates the introduction of environmental legislation in Ecuador. The first environmental measures were contained in the Ecuador Hydrocarbon Law Decree No. 1459 which was enacted in September 1971. In addition, according to the Hydrocarbon Law; Decree 101, enacted in August 1982, the operator was required to conduct their petroleum operations "in accordance with international practices in these matters". There was, therefore, a need to review typical exploration drilling and production practices for the petroleum industry in tropical rain forest areas. This would serve as an additional basis for assessing compliance of the oil field operations.

To determine typical operational practices in tropical rainforest areas, information was collected for petroleum operations in Columbia, Indonesia, and Trinidad. In addition, international guideline documents were reviewed including "Oil Exploration in the Tropics: Guidelines for Environmental Protection" (International Union for Conservation of Nature and Natural Resources 1991), and "Oil Industry Operating Guidelines for Tropical Rainforests" (E&P Forum 1991).

4.3 **RESULTS**

4.3.1 Ecuadorian Regulations

A review of Ecuadorian environmental laws and regulations has been completed and the results are presented in the "Final Assessment Criteria for an Environmental Evaluation of the PETRO-ECUADOR Consortium Oil Fields". A summary of the development of environmental legislation in Ecuador as it relates to the PETROECUADOR-TEXACO Consortium oil fields is given in Table 4-2.

Based on the review of Ecuadorian environmental laws and regulations, the following summary of provisions apply to drilling or production activities in the following time periods:

<u>1964 to September 27, 1971</u>

There are no environmental laws, regulations or decrees in place.

September 27, 1971 to August 4, 1973 (Decree No. 1459)

The operator was required:

- "To adopt all necessary measures for the protection of the flora, fauna, and other natural resources; and
- to prevent pollution of the water, the atmosphere, and the land."

However, no standards were developed to provide guidance for the application of Decree No. 1459.

PART-4.V1

CA1069464

CONFIDENTIAL

PET 040717

TABLE 4-2

Environmental Legislation Development in Ecuador PETROECUADOR-TEXACO Oriente Oil Fields

PETROECUADOR- FEXACO Joint Agreement	Ecuador Hydrocarbon Law Decree No. 1459 (Sept. 27, 1971), Article 24 s. to adopt all mecessary measures for the protection of the flore and fauna and other natural resource t. to prevent pollution of water, the atmosphere and land	TEXACO-GULF- PETROECUADOR contract, contained environmental control requirements: Decree No. 925, Clause 46.1 to minimize biophysical impacts. 46.1 "Contracts will adopt fitting measures for protection, the flora, fauns and other natural resources as well as avoiding pollution of water, the stimosphere and land under the control of state agencies". Comments a. Operational practices of petroleum operators in tropical humid reinforest areas ahould be from 1960 to June 1993.	Revised Ecuadorian Hydrocarbon Exploration and Exploitation Regulation (R.O. 530, Ch. VII April 10, 1974 Chapter IV Production: b) prevents the escape and waste of hydrocarbons in order to avoid loss, damage and pollution. <u>Comments</u> Production was designed to reduce the impacts of free hydrocarbon entering rivers, streams, lakes and the atmosphere. a. The Joint venture has been operating under typical operational practices for the petroleum industry in tropical, humid rainforest areas.	Law on Prevention and Control of Environment Pollution: Supreme Descree 374 (May 21, 1976) a. This law made it illegal to not observe the corresponding technical standards and regulations for the prevention and control of both water and soil pollution. Comments No corresponding technical standards and regulations have been reviewed to date that provided levels of compliance for the petroleum industry at that time in tropical areas. Because of the absence of corresponding technical standards and regulations, the joint venture would have to comply to the Ecuadorian Hydrocarbon Exploration and Exploitation Regulation R.O. 530.	New Hydrocarbon Lawa November 6, 1978 (N. 2967) a. To adopt the measures necessary for the protection of flora, fauna and other natural resources. t. Avoid polluting waters, the atmosphere and land. <u>Comments</u> Article a and t: reduced the required level of environmental compliance.	Reform to the Hvdrocarbon Law Decree 101 (August 1982), Article 31 (item 1 "to perform the petroleu operation as per the Law and Regulations to prote the environment and the national security and in accordance with international practices in these matters.

CA1069465

CONF

DENT 0407

18L

PART-4.VI

4-3

August 4, 1973 to April 10, 1974 (Decree No. 925)

The operator was required "to adopt fitting measures for protecting the flora, fauna and other natural resources as well as avoiding pollution of waters, the atmosphere and land under the control of State agencies".

No standards were developed to provide guidance for the application of this law.

April 11, 1974 to May 27, 1976 (ORD No. 530)

The operator was required to "prevent the escape and waste of hydrocarbons in order to avoid loss, damage and pollution". (Chapter IV Production Clause b)

Other measures included the following:

"The operator should take all the necessary measures and precautions while performing its activities in order to avoid damages or injuries to persons, property, natural resources and to locations of religious, archaeological or tourist interest." (Article 41)

"If salt water, drilling mud, oil samples or other elements may cause damage to the flora or fauna, the operator must propose to the Ministers the appropriate form of disposal in order to prevent such damages." (Article 42)

May 22, 1976 to November 6, 1978 (Decree No. 374)

The following measures related to prevention and control of pollution:

"Without abiding by the corresponding technical standards and regulations, it is prohibited to vent or discharge pollutants into the atmosphere, if in the opinion of the Ministry of Health, such pollutants may impair human life and health, the flora, fauna, and state or privately owned resources or property, or may become a nuisance." (Chapter V, Article 11)

"Without observing the corresponding technical standards and regulations, it is prohibited to discharge residual waters containing noxious pollutants that are dangerous to human health, flora, fauna and properties, into the sewage, the ravines, ditches, rivers, natural or artificial lakes, or to the sea, as well as to infiltrate these waters into the ground." (Chapter VI, Article 16)

"Without observing the corresponding technical standards and regulations, it is prohibited to discharge pollutants or any kind that could affect the quality of the soil and affect human health, flora, fauna and other properties." (Chapter VII, Article 20)

These laws were designed to prevent pollution of the atmosphere, soil, and water resources. An Inter-Institutional Committee for Environmental Protection was established to enforce this law

PART-4.VI

CONFIDENTIAL PET 040719

CA1069466

(Decree 374). The committee consisted of representatives of: the Minister of Health, Minister of Natural and Energy Resources, Minister of Agriculture and Livestock, Minister of National Defense, Minister of Industry, Commerce and Integration, and the President of the National Planning and Coordination Board.

November 6, 1978 to August 19, 1982 (Decree No. 2967)

The level of environmental compliance was reduced because of word changes within the articles affecting environmental controls. The relevant clauses are the following:

"Adopt measures necessary for the protection of flora, fauna and other natural resources." (Article 28, Clause a)

"Avoid polluting water, the atmosphere and land." (Article 28, Clause t)

August 19, 1982 to June 6, 1983 (Decree No. 101)

According to Decree No. 101, the operator was required:

"To perform the petroleum operations as per the Law and Regulations to protect the environment and the national security and in accordance with the international practices in these matters." (Clause t)

June 6 and June 7, 1983 to June 5, 1989

The Law of Hydrocarbons No. 1775 was introduced on June 6, 1983. The relevant measures were:

"Perform all of the services which are the object of the contract, according to the best international practices and techniques generally accepted in the hydrocarbon industry. These services must be performed preserving in the environment without damaging public or private property. For the pollution caused by the contractor's operations, the latter must perform the corresponding decontamination works notwithstanding his responsibilities to third parties and the corresponding authorities." (Clause 204)

"Contractor will adopt the measures necessary for protecting the flora, fauna and other natural resources and, at the same time, will avoid polluting air, water and soil as per the respective legal provisions and international agreement." (Clause 33)

The Law of Hydrocarbons No. 1771 was introduced on June 7, 1983. Provisions were similar to those contained in the Law of Hydrocarbons No. 1773.

June 5, 1989 to June 1990 (Decree No. 2144)

A regulation for the prevention and control of environmental pollution related to water resources was introduced on June 5, 1989. This regulation established specific discharge requirements for

PART-4.V1

4-5

CONFIDENTIAL PET 040720

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

septic and industrial waste waters.

The above summary of development of Ecuadorian environmental laws and regulations indicates that there were numerous changes during the period of operation of the consortium. Basic provisions for protection of soil, atmosphere and water from pollution were introduced in 1971. This provision was maintained in some form through to 1990. However, the laws and regulations lack specific environmental standards against which to assess compliance.

In addition, provision was made for the operator to comply with international practices in the Hydrocarbon Law (Decree 101) introduced in August 1982. The following section provides a summary of typical operational practices for the petroleum industry in tropical rainforest areas.

4.3.2 Operational Practices in Tropical Rainforest Areas

A review of typical operational practices in tropical rainforest areas was completed and the results are presented in the report "Final Assessment Criteria for an Environmental Evaluation of the PETROECUADOR-TEXACO Consortium Oil Fields". A summary of typical exploration drilling practices from 1964 to 1990 is given in Table 4-3. A summary of typical development and production practices for the period 1964 to 1990 is given in Table 4-4.

4.4 COMPLIANCE ISSUES FOR OIL FIELD DEVELOPMENT AND OPERATIONS

Throughout the period of operation of the PETROECUADOR-TEXACO Consortium, there has been a consistent approach in the Laws and Regulations to the prevention of pollution of soil, water and the atmosphere. This can be summarized in the form of the three main compliance issues for oil field development and operations given in Table 4-5. No corresponding technical standards have been developed during this period to provide a basis for assessing compliance for the petroleum industry. However, criteria values for various parameters for soil and water were developed specifically for this project. These values are summarized in the report "Final Assessment Criteria for an Environmental Evaluation of the Petroecuador Consortium Oil Fields".

4-6

PART-4.V1

CA1069468

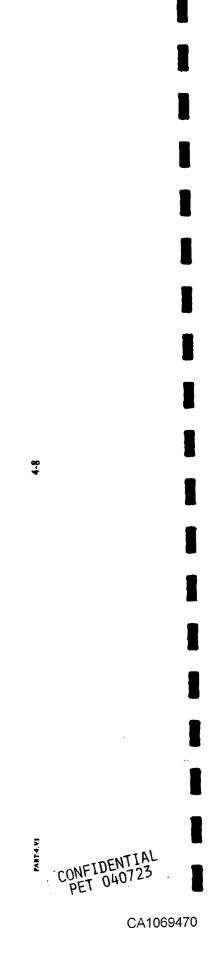
CONFIDENTIAL

PET 040721

								N weats						Acces			
 Wallhead BOP's were non-oxistent. 	 Drilling much and cuttings were flowed into the closest surface water. 	 Water supply from surface water and shellow wells. 	 Lease resoft was directed to method water. 	 Solid up from the sump was used to level the issue. 	the sumpe after testing and abandonment.	· Delling made and fluids were left in	 One sump was used for all drilling wasses, located in the lowest possible spot. 	 Drift sumpe dug at each lease. 	 Surface drainage pollerns were disrupted. 	 No erceios costrol, arceios bampered operatione. 	 Earth-moving equipment used for barge landinge, singing uses, access roads, have camp clearings and wellakse. 	 Helicopter not used until late 1969. 	 Wellifies located close to surface water courses. 	 Berges and short access roads from staging errors. 	1964 to 1969 to 1969 to 1969		
	• Same.				ļ	 Same, discharged to surface 					 Low grads access roads. Ruging areas 160 x 200 m. She out timber used as barys handleg material. 	 Personal moved by belicopter and planet. 		 Similar to previous section, but more activity. 	1970, 71, 72 73		
	 Regulations for shilling wass latroduced (1974). Air politicion protections introduced (1976). 				may were disposed of to methos water.	 All wasts and Builds collected in 			 Notural surface streams recound. 		 Reads built with large equiperant and stisting reads were extended for are leases. 	 Large balicoptors used for beavier loads. 	 Proximity to water and as important. 	 Similar to 1970-73. 	and 1974, 19 and 16 and 17 and	Typical Explorati for the Peric	TAB
							 Oil and figuide burned before abd. 	 Sumps were not fined. 			 Lonso are larger is size. 	 Helicopter used for rig moves. 	 Lass not always located over water. 	 Roads constructed with large equipment. 	1977, 10 19	Typical Exploration Drilling Practices for the Period 1964 to 1990	TABLE 4-3
								 Philds collected in sumps, success drained into surface water. 				 Hallcopter widely used. 	 One lease used for several wells. 	 Boads developed if necessary. 	1940, SI, IX IX		
					, and the second se								 Noise considered impecting natives and animals. 	 Roads developed in new areas. 	1944, 85 and 86		
		Rainjection of snilling fluids.	 Heavy metals procip generally avoided. 		of Buide and cuttings.	· Fings to contain, control and dispose	 Tasks used for oil based much and not dumped. 	 Separate mud, sump and burn pits mode. Water basid muds and additives used. 	 Adopted international standards (1988). 	 Brasics control practices iscorpornied. 	 Rosed and lease dealine to welclassize impacts. Top woll scripped and incolopiled. 	 Continued use of halicopters. Geotazziles used slong eccess roads (1989). 				NFIDE DET 04	NTIAL 0722

. .

PART-I.VI


4-7

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069469

(CONT'D)	
4	
TABLE	

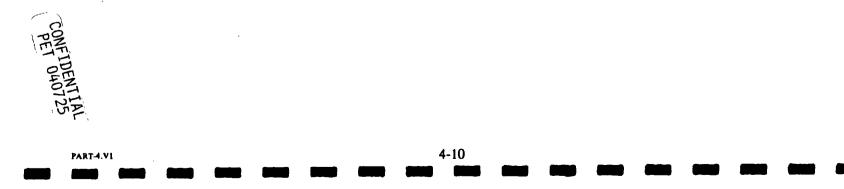
	 Armedio and acido containing • Production Static usata ino tanta co • Examo Static discharged • (1990 as regr regruting wates organic della statication recom. della etata or tested at Storellasi to benerica. Into Street. Into Street. Into Street. Interdist on (1975). The baseling as 1971-40 regr. disposal in interdists (1979). 	 Universal average Deverge transmit information Severge transmit information	ngely chees. d'rette	 Natural revegedation on lease. 	ring = 40,000 to • duras as 1940. Trailors were • dirajiar to 1974 anadardi. • Estating du likina weret • Pagna burning find doronge • Campo were sult constand. Wene Roopus stationd. • were file subscisso Roopus stationd. • (1973) to animicar will real. • Room often, area. • Anada were versal. • were Rook were wills were ditud. Angle treasment of • • • • • • • • • • • • • • • • • • •	 Abandoond wells wave capped, Lasses not exclutioned after Statilist to late. 1970. Startist and reading the state of the s	Xud oaly on • Simi kit for antical rows. via. • Scons sizes strong by to: kernesed charge to n- plasting grass. equipment.	 Bolhá seure collected and Pha was infilted without displacing benead and benead. 	 Laure shared of systemet and events. 	
	- Same. • Armenia mad. organic lable disposal in la	 Statienty evenge discharged to surface weise. 	 Solid wastes, ampty chem. drame piled on lates. 		 Same. She sharing = 40,000 to - 8 acres as 1966, core 90,000 art. Helloopput satisfied. Proceedings the scattery overge discharged to (1979) to stat. Jungla. The state of the state of the state. Section 4000, 1991. 	 Sama. Altantóronal e censará pluga pluging restor filinged. 				
1964 to 1969	 Bucess flow to st oil was drummad . and shipped for analysis, remainder discharged to surface waser. 	 Saakary facilities ware treach latrines. 	 Comp and operation refuse was missed, piled and burnt on elle. 	 Operations used more than one dump the per well. 	 Temportry active, modelled after alitary operations. 	 No melaim/abl procedures seed on beam, access or barge areas. 	 Walls wav asigped of surface equipment. 	 Casing was welded, compart injected. 	 Support to bimad before hearing. 	

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

TABLE 4-4

Typical Development and Production Practices for the Period 1964 to 1990

Access	 By land, on upgraded roads. 	• Narrow roads built for lease/site access.	 Small aimstrips built for emergency evacuation. 	 Major access roads upgraded.
	 No crosion control. 			
Base Camps	 Exploration camps used and permanent buildings constructed. 	Camps constructed from portable trailers.	• Similar to previous years.	 Campa upgraded to batteries. Harvesting local crops near clearing
	• Site runoff through ditches or not addressed.			 Untreated sewage discharged to creeks.
	Treach latrines.			 Solid waste collected in surface dumps which reveg.
	 Water supplied from surface or shallow wells. 			
Drilling	Practices follow exploration practices.	• Oil from test tanks was recovered.	 Artificial lift introduced (gas lift/water flood). 	• See exploration practice.
	 All wastes discharged directly into surrounding environment or stored until next rainstorm. 			
Production Operations	 Natural lift flowing wells. 	• Gas separation at battery.		 Larger pits to hold more produced water.
	• Gas was flared in pits.	 Wash tanks and small open pits used. 		 Pits built in series, discharge into streams.
	 Excess fluids discharged into environment. 	 Produced gas was flared in pits or short stacks. 		 Potable water from river, filtered a chlorinated.
		 Excess pit fluids drained to surrounding areas at batteries. 		
		 Spills were common and left in place. 		
Pipelines	 Pipelines not protected from corrosion. 	• Same.		 More pipeline installation.
	 Leaks and breaks are common. 	 Lack or preventative maintenance. 		 Increased pipeline failures.
	 Oil may be removed by vacuum truck or left in place. 	 Line breaks at road crossings, water crossings, line under high pressure. 		 Spills larger but more remote than previously.
Site Abd and Restoration Base Camps	 Salvaged only valuable equipment. 	• Equipment recovered from abd wells.		 Natural site remediation more effective.
_	• No effort made to remediate or prevent erosion.	 No reclamation attempted. No soil erosion prevention. 		• Little remediation effort.
PART-4.V1				• • • • • • • • • • • • • • • •
PART-4.V1		4-9		


CA1069471

CA1069471

TABLE 4-4 (CONT'D)

	1980, 81, 82 and 83	1984, 85 and 86	1987, 88, 89 and 90
Access	Roads were rebuilt.	· Road erosion controlled by piles and metal sheets.	 New access roads planned for better access.
	Larger airstrips built.		 Upgrade existing roads. Provision for erosion/roduce stream sodimentation.
Base Camps	 Sewage from camps rudimentary treated in septic tank and overflow into surface water. 	Larger, centralized camps.	• Large areas cleared and drained for facility dev. Temp. camps upgraded to perm facilities.
	• Water from river, filtered, chlorinated.		 Septic tanks installed. Landfills controlly located, no liners, monitoring. Incinerators used. Hunting restricted.
	 pH and chlorine testing of water. 		
Drilling	See exploration practices.	 Service fluids (NaCl brines) discharged to area. 	 Directional drilling increased. Pits used for drilling mude only. Remote sumps used. Mud reuse, landfarming, proper disposal injection.
Production Operations	 Solid waste collected and piled for reveg. 	• Spills in/around batteries covered with soil.	 Production facilities paved, veg. established.
	 Solids, emulsions and fluids drained from tanks annually 	· Blooding gas, drains, tank lines, etc. continued.	 River and pit drains sampled.
	 Drained to surface water. 	Chemicals widely used in all operations.	 Tank bottoms used for dust control on roads.
	 Excess gas flared at batteries. 	Chem drums disposed of with solid wasts.	• Oil interceptor used for discharged water.
	• Prod. water from high TDS, chlorides and temp. discharged to surface water.	Berm runoff directed into sumps/pits.	• Recovery of gas considered.
Pipelines	 Cathodic protection first used on main lines. 	Chema used to protect lines from corrosion.	Satellite pumping stations used.
	 Flowlines coated with carbon steel. 	Dispersants used for spills.	Pipeline leaks repaired.
	· Line leaks repaired.	Existing lines upgraded to min. leaks.	Pipe inspection upgraded.
	 Pigging facilities built on major lines. 	 Preventative measures started to control product joss. 	
Site Abd and Restoration Base Camps	Abd practices followed exploration practices.	• Salvage all site equipment, burn/bury solid waste on abd.	• Equipment salvaged and removed from site. Pits were filled, installations levelled.

CA1069472

TABLE 4-5

Issue Identified from Laws and Regulations	Potential Contaminant Source
Contamination of Soil	Oil/brine spills from wellheads, flowlines, pipelines. Dams and drains of tank basins. Disposal of tank bottoms. Disposal of chemicals and containers. Seepage from pits.
Contamination of Water	Oil/brine spills from wellheads, flowlines, pipelines. Dams and drains of tank basins. Disposal of tank bottoms. Wastes disposal. Disposal of chemicals and containers. Overflow and scepage from pits. Disposal of produced water.
Contamination of Air	Burning of oily wastes. Incineration of miscellaneous wastes. Use/disposal of produced gas.

Summary of Compliance Issues Related to Ecuadorian Law as a Result of Oil Field Development and Operations

PART-4.VI

CONFIDENTIAL PET 040726

5.1 INTRODUCTION

The main objective of the facility audit was to gather information on operational practices to provide an understanding of contaminants that may have entered the environment from past (pre 1990) practices. Specific objectives included:

- to obtain information relevant to operational procedures prior to June 1990 and post June 1990. This information will assist in determining possible causes of soil, ground and surface water contamination during the period 1964 to 1990; and
- to obtain information on operational practices to determine compliance with Ecuadorian Law and tropical rain forest practices as summarized in Part 4.0 and the Criteria document.

5.2 METHODOLOGY

Audit information was gathered from three different sources:

- preliminary information was gathered by reviewing office files from the PETROECUADOR office located in Quito, Ecuador;
- a preliminary audit questionnaire; and
- the facility audit.

5.2.1 Pre-Audit Questionnaire

The pre-audit questionnaire was developed from the information gathered from the file review. This questionnaire was sent to each of the main production facilities and information was requested including the names of personnel most knowledgeable on plant operations and field operations, waste disposal, spill response, environmental monitoring, historical documents and past practices. The availability of procedures documentation and government licences was also determined. Information was also requested on present and past treatment and disposal or abandonment practices for produced water, tank bottoms and residual oil, drilling fluids, pits, produced gas, chemicals, sewage, filters, drums, equipment taken out of service and materials contaminated by spills. A copy of the pre-audit questionnaire is given in Appendix B.

5-1

CONFIDENTIAL PET 040727

Earth & Environmental Group

AGRA

PART-5.V1

CA1069474

5.2.2 Facility Audit

The information obtained from the pre-audit questionnaire was then used to refine the protocols developed for the audit. The facility audit was conducted from May 17 to June 3, 1993. The audit was conducted at the camp stations of the main oil fields. These stations include Lago Agrio, Shushufindi, Sacha and Auca. These main stations had personnel knowledgeable on the operation of all the fields. The operational records of the smaller fields were also located at these main camp stations. The facility audit at the four main stations therefore incorporated information from all 22 production stations (Table 5-1).

Audit information on the operational practices was gathered by the following methods:

- review of Department of National Hydrocarbons (DNH) and PETROECUADOR files; and
- operator interviews.

A master audit checklist (Appendix B) was used during the facility audit to record the source and availability of information for specific areas of oil field operational practices. This provided a screening mechanism so that information could be located and collected for relevant areas of operational practice.

Information on the three main areas of oil field operational practices was collected:

- facility management;
- well site management; and
- pipeline management.

A facility audit protocol list (Appendix B) was used to "key in" on specific aspects of oil field operational practices. It as organized according to the three main areas listed above.

The facility management section included such aspects as:

- general information;
- facility description;
- site history;
- site characteristics;
- air emissions;
- water/wastewater discharges;
- waste handling and storage, transportation and disposal;
- material handling and storage;
- storage tanks;
- use/disposal of produced gas;
- containment and control of crude oil spills;

PART-5.V1

5-2

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069475

CONFIDENTIAL PET 040728

The Association Between the Four Camps, Where the Facility Audits were Conducted and the 22 Production Stations

÷. 'n.

Main Camp Station	Oil Field	Production Station
Lago Agrio	Lago Agrio	Central Production Station
		North Production Station
	Parahuacu	Production Station
	Atacapi	Production Station
	Guanta	Production Station
	Dureno	Production Station
Shushufindi	Shushufindi	Central Production Station
		North Production Station
		South Production Station
		Southwest Production
	Aguarico	Production Station
Sacha	Sacha	Central Production Station
		North #1 Production Station
		North #2 Production Station
		South Production Station
Auca	Auca	Central Production Station
		South Production Station
	Auca Sur	Production Station
	Culebra	Production Station
	Yulebra	Production Station
	Yuca	Production Station
	Yuca Sur	
	Rumiyacu	
	Cononoco	Production Station

PART-5.V1

5-3

CONFIDENTIAL PET 040729 TAL

- radioactive materials;
- noise;
- disposal of produced water; and
- disposal of tank bottoms and residual oil.

The well site management section included such aspects as drilling and workover pits, disposal of tank bottoms and residual oil, management of residual wastes, disposal of excess chemicals and their containers.

The pipeline management section includes the condition, management and repair of the secondary and main pipelines within the fields.

The following is a list of the key personnel interviewed at the main camp stations. These people were originally identified in the pre-audit questionnaire as the most knowledgable about the different aspects of the facility operational practices.

Lago Agrio Isias Carrillo Fausto Jara Antonio Troya Jorge Pinafiel Carlos Chavez

Shushufindi Marco Ochoa

Patrico Flores

Galo Naranjo Luis Fierra

Antonio Troya

Pablo Moreno

Frenando Roman

Production Superintendent Head of PETROAMAZONAS Environmental Unit Environmental Unit

N 12

يد آ

Camp Supervisor Materials Production Production Environmental Unit Environmental Unit Head of Special Projects

Camp Supervisor

Environmental Unit

Environmental Unit

Camp Supervisor

Production

Production

Production

Sacha

Hector Diez German Velladares Marcelo Agula Antonio Troya Fernando Roman

<u>Auca</u> Lauro Mora N. Grijalua

PART-5.V1

5-4

CA1069477

CONFIDENTIAL PET 040730 Pablo MorenoHead of Special ProjectsM. MoranEnvironmental UnitAntonio TroyaEnvironmental UnitFernando RomanEnvironmental Unit

. ⁻.

5.3 SITE DESCRIPTIONS

· · · ·

5.3.1 Lago Agrio

The topography of the Lago Agrio area is typically rolling hills with the Rio Aguarico flowing south of town. Much of the surrounding native jungle has been cleared for residential housing and livestock grazing. Numerous banana and coffee plantations have been planted in the area. The soil varies from sand to red clay to an unknown depth.

• •

.. .

5.3.2 Shushufindi

The topography of the Shushufindi area is low rolling hills with numerous streams. The Aguarico River divides the Aguarico oil field from the Shushufindi field. This river is crossed by a small bridge along the central road. The surface geology shows silts and clays to unknown depths. The main facility is located on a flat area crossed by numerous streams. Lush forest growth surrounds the facility. Numerous fruit, coffee and banana plantations are present.

5.3.3 Sacha

The Sacha area is characterized by relatively flat topography with numerous creeks and streams flowing through the area. The field area is located north of the Rio Napo. The town of Coca is approximately 20 km southwest from the main camp. The main facility is located on an area which is fairly flat. Most of the native rain forest has been cut down for plantation and grazing purposes. The local industries located in the township of Sacha mainly exist to service the local population. Coca is more industrialized and contains services both for the oil industry and local services.

5.3.4 Auca

The topography of the Auca and outlying areas is typically hilly with numerous streams surrounded by native jungle and sparse plantations. The northern boundary of this area is the Rio Napo. Less colonization has taken place in this area compared to the northern areas studied. There are no surrounding urban centres and few services for the colonists. The Auca station is located on a hill and there are no critical wildlife habitats recognized in this area. Several large streams are in the vicinity of the Auca facility. The local surface geology is silts and clays to an unknown depth. River gravels and sands have been used to build the lease sites.

PART-S.VI

CONFIDENTIAL PET 040731

• • • • • • • •

5.4 OVERVIEW OF FACILITY OPERATIONS

5.4.1 Process

A flow diagram which details the production process is shown on Figure 5-1 (Map pocket). The process collects produced fluids (oil, gas and water), separates and disposes gas and water and delivers crude oil to market via pipeline. The type, quantity and capacity of processing equipment used at the stations is also detailed on Figure 5-1. The separation process is conducted at eighteen outlying production stations and four central production stations. All twenty-two production stations are currently, or have at some time, discharged oily produced water to the environment and flared excess gas. The stations have processed a total of approximately 1.4 billion barrels of oil, 250 million cubic-feet of gas and 375 million barrels of produced water during the period 1964 to 1990.

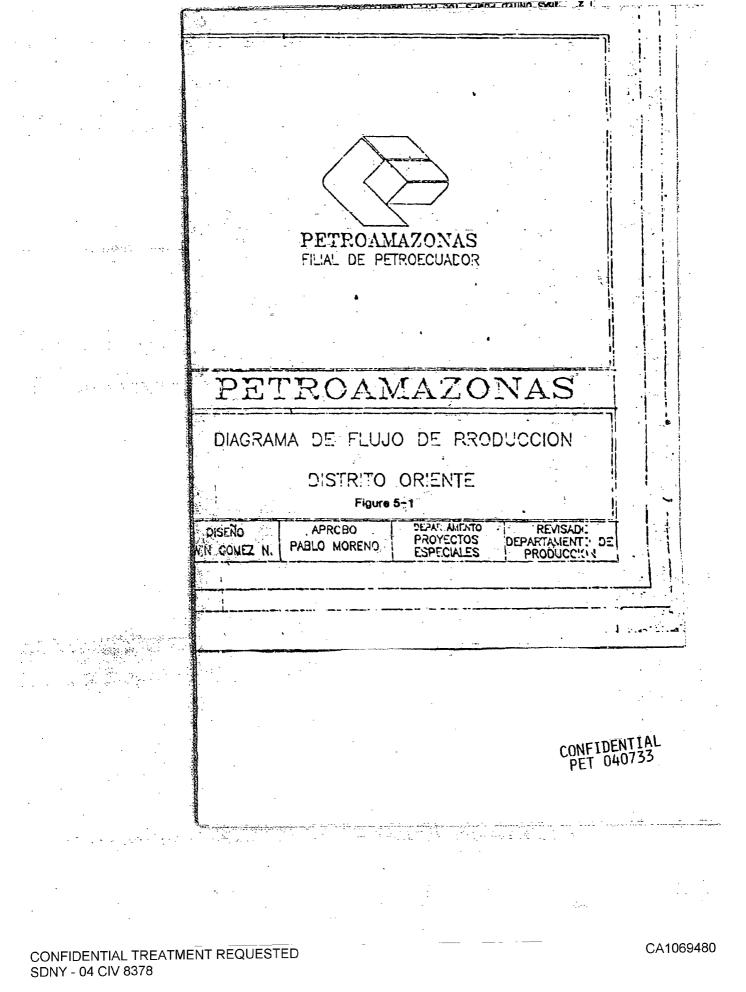
Installations at production facilities include surge tanks, wash tanks, oil storage tanks, separators, manifolds, pumps, generators, metering stations, flaring systems and produced water separation pits.

5.4.2 Central Facilities

5.4.2.1 Lago Agrio

Lago Agrio is the largest of the central stations. The facilities at Lago Agrio include the following:

- main camp;
- north station:
- · central station; and
- outlying stations including Parahuacu, Guanta, Atacapi and Dureno.


The main camp covers approximately 80 ha and approximately 196 people work and are accommodated within the camp. The camp includes PETROAMAZONAS offices, vehicle and equipment maintenance area, reforestation nursery, a fire station, camp water supply tanks, used equipment storage, chemical storage, accommodation, cafeteria, medical clinic, airport and recreation facilities.

A camp waste incinerator is located at the nearby north station.

30315 HE

CA1069479

CONFIDENTIAL PET 040732

The central station is divided into two areas, the process facility and the tank farm. The process facility collects the produced petroleum products from the outlying stations and nearby well sites for final processing before storage at the tank farm. This facility is larger than the field stations, but the process is similar. The product is then stored at the tank farm before being transported via pipeline to a refinery.

5.4.2.2 Shushufindi

The facilities within the Shushufindi field include:

- central production station;
- north production station;
- south production station;
- southwest production station; and
- Aguarico production station.

The volume of oil processed at the Shushufindi stations is currently approximately 105,000 barrels per day.

Facilities at the camp and central production station include hydrocarbon processing area, PETROAMAZONAS offices, maintenance area, vehicle maintenance, fire station, accommodation, cafeteria; medical clinic, airport and recreation facilities.

5.4.2.3 <u>Sacha</u>

The facilities at Sacha are divided into the following:

- central production station and main camp;
- north #1 production station;
- north #2 production station; and
- south production station.

The total volume of discharged fluids is 56,000 barrels per day from the Sacha facilities. The Central Station produces 20,000 bbl/d, North #1 station produces 2,700 bbl/d, North #2 station produces 2,900 bbl/d and South Station produces 7,000 bbl/d. The water injection system currently injects of 13,000 barrels of water into the reservoir.

The central production station and main camp covers approximately 47 ha and approximately 77 people work and are accommodated within the camp. Facilities at the camp include PETROAMAZONAS offices, vehicle maintenance, fire fighting capabilities, housing, cafeteria, medical clinic and recreation facilities. The central production station was constructed in 1971.

PART-SWI-

CONFIDENTIAL PET 040734

central production station and camp;

station; and

6

• outlying production stations at Culebra, Yulebra, Yuca, Yuca Sur, Cononaco and Rumiyacu.

: 1

- 10 - 52

. . . .

The Auca central station and camp occupy approximately 30 ha. Approximately 62 people work in the Auca oil field and production facilities and are accommodated within the camp. The camp includes PETROAMAZONAS offices, vehicle and equipment maintenance area, a fire station, accommodation, cafeteria, medical clinic and recreation facility. The camp supplies most of the services needed to operate the facilities.

5.5 SUMMARY OF FACILITY AUDIT OBSERVATIONS

The following sections provide a summary of the observations recorded during the facility audit. The information is organized according to the three main areas of operational practices: production facility management, well site management and pipeline management. The operational practices were found to be similar between facilities and are therefore summarized according to the main aspects of operational practices. Any differences in practices between different facilities have been noted below.

5.5.1 Production Facility Management

The production stations are all similar in design, the only variance is the capacity of each station. Each station uses a gravity separation system in conjunction with separators to separate the oil from the produced water. The oil is not refined on site but is sent via a pipeline to a refinery on the coast of Ecuador. The produced water is disposed of through a waste stream into the surrounding area. The excess gas produced with the oil is flared at each of the stations. A freshwater injection system has been developed for the Shushufindi and Sacha fields. Both systems inject freshwater into the production formations using abandoned production wells. The Shushufindi injection system has been in use since 1984.

Power generation for the camps, the production stations and the well sites is provided by gas fired turbines located at each of the central stations.

5.5.1.1 <u>Air Emissions</u>

Sources of atmospheric emissions from the stations include flare stack emissions, equipment exhaust, and an incinerator at the Lago Agrio north station. The incinerator burns non-

PART-5.VI

p. .

5-9

CA1069482

CONFIDENTIAL

PET 040735

biodegradable waste from the camp. The local people use the ash generated for crop fertilizer. The incinerator was built approximately 12 years ago and uses gas produced from the station to fuel the burners. No monitoring systems are in place or used to test the flare stack emissions or emissions from the incinerator stack.

A response procedure in event of accidental product release or complaint has not been developed. There have been no reported abnormal emission events.

5.5.1.2 <u>Water/Wastewater Discharge</u>

Potable Water

. .

The source of potable and process water for Lago Agrio has been the Rio Teteye. This is currently changing to a well source, due to contamination from unknown sources in the river. The water is presently filtered, flocculated and chlorinated. Drinking water is further sampled and analyzed daily in the camp laboratory.

Process and potable water for the Shushufindi station and main camp is supplied by a nearby river. Potable water is disinfected by an ultraviolet purifier.

Process and potable water source for the Sacha stations is the Rio Blanco. Potable water treatment method was not described during the audit.

At the Auca facility, potable and process water is obtained from a large stream north of the facility. This stream also receives liquid wastes produced at the facility. No potable water contamination has ever been identified from this source.

Wastewater

Wastewater streams from the stations and camps include produced water, sewage, wash water from the laundry and car wash, runoff from the process area, surface drains and floor drains. These streams are either diverted back through the produced water system or collected in a system of ditches throughout the camp which discharge into nearby streams. There are no evaporation ponds or other wastewater impoundment areas at the main facilities. No testing is conducted on the wastewater prior to disposal into the river except at Shushufindi where wastewater bioassay testing has been conducted since 1990. These waste streams were similar prior to 1990.

Sewage has been treated at Lago Agrio in open pits since 1992. Prior to this, sewage was released on land or stored in pits that emptied into the local river. A system of heat treatment is presently being investigated for sewage treatment. Sewage at Shushufindi is held in a septic tank which discharges directly into a river. At Auca, the sewage stream is designed so that it

PART-5.V1

CONFIDENTIAL PET 040736

CA1069483

flows into a cistern and then is released into the jungle. The sewage effluent is not analyzed before release.

8. 1

Non-potable water used for fire fighting is stored in tanks at all of the central stations. Numerous creeks and rivers flow through the concession area. Produced water, run off from vehicle and equipment washing, surface run-off from the leases and stations as well as outflow from pits is diverted or discharged into these streams. Rainwater is directed into surface culverts and then diverted of off-site via ditches.

There is no required groundwater monitoring program for any of the fields assessed. No groundwater monitoring program was in place prior to 1990 at any of the stations. There are no water wells presently drilled at the facilities.

A groundwater monitoring program was reportedly initiated at Shushufindi in 1990. Groundwater samples are collected by an engineer. The operators reported that surface and subsurface contamination is present, however they did not provide specific information regarding well locations or monitoring data. Numerous shallow domestic water wells are used within the town and by rural residents.

A groundwater monitoring program has not been developed in Lago Agrio, Sacha or Auca. The operators are not aware of groundwater contamination. The water table is encountered at approximately one to two metres depth in most areas of the fields. Regional groundwater flow varies depending on the local topography. The depth to potable aquifers also varies, although most residential wells are hand dug.

5.5.1.3 Waste Handling. Storage. Transportation and Disposal

Prior to 1990, organic waste was disposed of at a Lago Agrio well site or at the facility and nonbiodegradable material was stored in drums and disposed of at a local landfill. The location of this landfill was not provided. A new landfill is presently being constructed in Lago Agrio. Since 1990, the waste in the Lago Agrio field has been separated with the biodegradable material composted and the remaining waste incinerated at the North Station. Organic wastes are presently placed in a compost generator pit at the Shushufindi central station. Prior to 1990 waste was buried or burnt in a pit off site. Organic waste at Sacha is currently buried at Sacha 40 well site. Burial of waste at different well sites has taken place historically in this field. No incineration of wastes is presently done at the Shushufindi, Sacha, or Auca fields.

No waste materials are presently recycled as there is no facility that can accept this material. Waste reduction and pollution prevention plans are currently being developed. Prior to 1990 no plans were in place. It was reported that in the future, compost generated from organic wastes will be used during tree planting operations.

CONFIDENTIAL DET 040737

PART-5.VI

<u>ر</u>

· 1

Sec. 2

•_• *

Ĵ,

A waste storage facility was constructed at the Shushufindi central station in 1991-92. Prior to the construction of this storage area there was no facility to securely store these wastes. Prior to 1990 all non organic waste was buried with no prior testing. The storage practices for this facility are to containerize the waste in 45 gallon drums and then stockpile the drums. Empty drums are also stored at this facility. A water collection drain constructed into the base of the concrete enclosure drains into a retention pit, which drains into the jungle.

Specific waste oils including lubrication, hydraulic, generator and cutting oils, are placed in drums and buried at Shushufindi. Waste oils from the Auca stations are disposed of in a concrete sump which drains directly off site without treatment. Oily sludge generated at Auca is also spread on the lease roads for dust control. Oily sludge from Lago Agrio is now reprocessed. Prior to 1990 these sludges were either reprocessed or spread on lease roads for dust control.

The commonly used chemicals in all fields include demulsifiers, descalers, anticorrosives, antifoaming agents, antiparaffin and acid bath chemicals. Additional chemicals in use at Shushufindi and Sacha include surfactant, bactericides, polyelectrolites, sodium hydrochloride, acetone and hydrochloric acid. These chemicals are stored on racks in 45 gallon drums in a fenced area, or in storage tanks in the tank farms. Empty chemical drums are returned to the supply company.

5.5.1.4 <u>Material Handling and Storage</u>

A material inventory list is generated at each station. A separate hazardous material list has not been made as no hazardous materials are recognized as such. Materials are received by contractor supply trucks and stored in drums on racks or in larger storage tanks. The drums are periodically inspected for signs of leakage.

No waste materials are presently recycled or reused. Waste reduction and pollution prevention plans are currently being developed.

5.5.1.5 Storage Tanks

• : .

American Petroleum Institute (API) standards are reportedly followed in the design and use of the aboveground storage tanks. The tanks are reportedly inspected visually for corrosion and leakage. Most of the corrosion damage reported is on the base of tanks due to water, and at the top from gas. Storage tanks have historically been repaired or dismantled as necessary, but not abandoned due to increased production throughout the fields. Underground storage tanks are reportedly not used at any of the stations due to the high water table and the highly corrosive nature of the soil.

PART-5.VI

5-12

CONFIDENTIAL PET 040738

The Shushufindi storage tanks were inspected by station personnel in April 1990. Over the past few years the tanks have been sonically tested on a regular basis. The Sacha storage tanks at Auca and Sacha are reportedly inspected visually for corrosion and leakage. Integrity testing tasks on the tanks started in the late 1980's and is currently done.

. .

5.5.1.6 <u>Use and Disposal of Produced Gas</u>

ξ.

۰.

Produced gas is gathered through a series of compressors and fluid separation systems. Excess produced gas is flared only at the production stations, but venting may take place at the well sites. Produced gas has recently been used as fuel at the production stations. Prior to 1990 all excess gas was vented or flared. Knockout tanks are not in use along flare lines. Liquids in the flare line drain onto the ground or into nearby separation pits.

5.5.1.7 <u>Containment and Control of Crude Oil Spills</u>

Integrity testing of storage tanks started in November 1989 and use of spill prevention measures such as sonic testing began post 1990. Primary and secondary containment barriers such as berms and ditches and emergency containment equipment (e.g., absorbent materials) are designed to limit spill migration. Emergency containment equipment is stored at Lago Agrio and Shushufindi central station. Spills and leaks are detected by volume and pressure loss in the system. Oil spill material from the Sacha stations is disposed of into the produced water stream.

Prior to 1990, no spill prevention methods were in place. The recently formed PETROAMAZONAS Environmental Unit has recognized the need for additional spill control, reporting and spill site reclamation. Implementation of proposed methods has not taken place. A spill response plan, which has yet to be developed, will outline specific response and control responsibilities, training requirements and identify personnel designated to respond to public concerns. A plan that addresses spill response for road transports has not been developed.

5.5.1.8 <u>Radioactive Materials</u>

There are no radioactive materials reportedly used or generated at any of the production stations.

5.5.1.9 <u>Noise</u>

The principal sources of noise are compressors, pumps, generators and turbines. No complaints have been reported due to the noise levels. The operators were not aware of any regulations that have to be met or complied with due to noise production.

PART-5.V1

CONFIDENTIAL PET 040739

5.5.1.10 Disposal of Produced Water

y na<u>n</u>an an Anana. The stations use a gravity separation process in the wash tank to separate oil from produced water. Produced water is then passed through a series of open, unlined pits. Oil is periodically skimmed off the surface and stored in tanks before reprocessing. The remaining oil emulsion and produced water is discharged into a local creek or river or in some instances directly into the jungle. For further information on produced water effluents, see Part 7.0. Produced water has historically not been tested prior to disposal, although irregular testing was reported to have taken place prior to 1990.

. . .

1.20

Deep well reinjection for a portion of the produced water is presently in use at the Shushufindi and Sacha fields. At Sacha, water injection began in 1986 and currently 13,000 bbl/day are reinjected. A produced water storage facility associated with the water injection wells at Sacha was constructed after 1990. A reinjection system is also being designed for Lago Agrio.

5.5.1.11 Disposal of Tank Bottoms and Residual Oil

Tank bottoms are not treated or analyzed before disposal and the volume of waste is not recorded. The material is presently disposed of on the roads or in pits. This practice is the same as before 1990. Treatment or recycling of tank bottom material and residual oil is not currently practised.

5.5.2 Well Site Management

Exploratory drilling and development drilling typically used freshwater based muds and salt based muds. Standard fluid circulation equipment included a shale shaker which was used to segregate the drilling fluids before recirculating into the main sump. Drilling muds at Lago Agrio were treated in the sump using flocculants and polymers. Muds were tested prior to disposal. Prior to 1990, muds containing lithium sulphate and other heavy metals were disposed of in sump pits.

Upon completion of the well, the wellhead cellars were filled with concrete and gravel. Some of the wellheads are protected against accidental impact by steel pipe fencing. All equipment and buildings associated with drilling and not necessary for the operation of the well have been removed from the well sites.

Workover, completion wastes, salt solutions and oil/water emulsions have historically been disposed of into well site pits. Currently some of these wastes are collected in tanks or deposited in concrete separation pits at the production stations. Little maintenance has reportedly been done on any of the pits at the well sites. Workover and completion wastes in the Lago Agrio field are reprocessed at the Lago Norte station. The acid water produced from workovers in all fields is now neutralized and disposed by the contracting company. Previously, this water

PART-5.VI

5-14

CONFIDENTIAL PET 040740

was disposed of in the well site pits. All fractionation sands and related acidic chemicals are disposed of by the company contracted to do the work. The method and place of disposal for these wastes was not identified.

Since 1990, the suspended wells have been monitored similarly to the operational wells, but on a less frequent basis. Monitoring schedules before 1990 are not known. Prior to 1990, pits were not maintained. Since then erosional damage has typically been repaired. Post 1990 efforts have been made to minimize the working size of the well sites. Prior to 1990, no effort was made to minimize the lease size but natural infilling took place due to the growth rate of the surrounding vegetation.

An environmental unit of PETROAMAZONAS has been formed since 1990. This unit has recently recognized the need for spill prevention methods. Prior to the formation of this unit, no preventive measures other than occasional visual monitoring programs were undertaken. The current spill monitoring program involves visual inspection of the well sites every three months.

A reforestation program has begun through the development of the nursery facilities at Lago Agrio main camp. The main stations, except for Auca, are presently supplied with information and plants from the Lago Agrio nursery. The Auca reforestation program will be in place in 1994. Part of this reforestation program includes donating plants to farmers. Prior to 1990 no reforestation program for any of the fields was in place. Vegetation and weed control has historically been done by manual labour.

Protection of surface water quality was reportedly not considered during exploration drilling. Prior to 1990, some measures were taken in Shushufindi to protect surface water, fresh water and mineral resources from contamination depending on the lease location. Since 1990 limited protection measures have been instituted. As an example, waste streams are now being separated and tested prior to disposal at Sacha.

5.5.3 Pipeline Management

Pipelines are currently monitored every three months and a visual inspection is done during well servicing. Since 1990 sonic pipeline monitoring has been part of the program. Suspended flowlines are also visually monitored. Spills are recorded on a form and filed with the DNH. Spills are usually detected by a pressure or volume decline. Spills have reportedly always been assessed for remediation. Manual vegetation control programs have always been in place along the pipeline right of ways.

5-15

PART-5.VI

C. . . .

10.3.N

2000

ي يو ا

1

1.

۰.

5

;

Ϋ.

ŀ.

۰.

CA1069488

CONFIDENTIAL PET 040741

5.6 SUMMARY OF AUDIT FINDINGS

This section provides a comparison of the observations of oil field operational practices recorded during the facility audit to compliance issues identified from the regulatory review. A summary of the operational practices for the Consortium oil fields is given in Table 5-2. In most cases, the operational practices are the same before and after 1990. There are exceptions with regard to composting of organic wastes at Lago Agrio, testing of drilling fluids prior to discharge, well site revegetation and the frequency of pipeline and well site inspections.

5.6.1 Compliance of Operational Practices with Ecuadorian Law

As noted in the regulatory review (Part 4.0), Ecuadorian Laws and Regulations are concerned with three main issues, namely preventing pollution of soil, water and air. Oil field development and operations can cause pollution of soil, water and air as a result of several different activities. These are identified in Table 4-5. To assess whether the Consortium oil field operations were in compliance with Ecuadorian Law and Regulations for the period 1964 to 1990, operational practices prior to 1990 (from Table 4-5) were compared to activities identified from the facility audit as potential sources of contamination to soil, water and air (Table 5-2). The results of this comparison are presented in Table 5-3. In all cases, activities likely to cause contamination were identified from pre-1990 operational practices. Therefore, the Consortium oil field operations prior to 1990 were potentially not in compliance with Ecuadorian Law and Regulations.

No technical standards were developed in association with Ecuadorian Law for the period 1964-1990 which can provide a basis for assessing compliance of operational practices with the Laws and Regulations. For example, for a given oil spill there is no stated oil and grease value in soil which is considered unacceptable and would require remedial action. However, criteria values for various parameters for soil and water were developed specifically for this project. These values are summarized in the report "Final Assessment Criteria for an Environmental Evaluation of the PETROECUADOR Consortium Oil Fields". The criteria values have been used to verify contamination resulting from oil field operations and the results are presented in Part 6.0 of this report.

5.6.2 Conformance of Operational Practices with Typical Operational Practices in Tropical Rainforest Areas

A comparison was made with typical operational practices in tropical rainforest areas (Tables 4-3 and 4-4) with the operational practices recorded during the facility audit (Table 5-2). This was undertaken to assess conformance of the Consortium oil field operations with operational practices in tropical rainforest areas. The results of this comparison are presented in Table 5-4. This comparison indicated that the Consortium operational practices were similar for operational practices of the same period (1964 to 1990) in other tropical rainforest areas.

PART-5.V1

CONFIDENTIAL PET 040742

• 3

Summary of Operational Practices for the Oil Fields for the Period Prior to 1990 and After 1990

<u>Facility</u> Management		
Air Emissions	Sources included flare stacks gas venting and equipment exhaust.	Same.
	Incinerator installed at Lago Agrio approx. 1980.	Incinerator still operational.
	No equipment used for any emission monitoring or testing.	Samo.
Water/Wastewater	Local river used for potable and process water.	Same, although a well is coming on line for potable water for
Discharges		the Lago Agrio camp.
	Potable water not tested.	The potable water is tested and treated prior to use.
	Wastewater streams include produced water, car wash, laundry	Same.
	surface drainage, equipment area drainage and sewage.	Samo.
	Surface runoff discharged into local streams.	Same.
	Sewage not tested or treated prior to disposal into a river.	Same, except for SSF where bioassay testing is conducted.
	No testing prior to discharge of wastewater.	Same.
	No treatment of wastewater conducted prior to discharge.	Same, except at SSF, groundwater monitoring program in place
	No groundwater monitoring program in place.	

5-<u>17</u>

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

HOTH

PART-S.VI

Summary of Operational Practices for the Oil Fields for the Period Prior to 1990 and After 1990 (Continued)

	Pre 1990	Post 1990
Waste Handling	Toxic wastes not treated.	SSF - toxic waste stored in designed pit.
and Storage,	Oil sludge reprocessed or spread on roads.	Oil sludge is reprocessed.
Transportation, and Disposal	All drill muds disposed of in the sumps, with no testing.	Drilling muds are treated in the sumps and tested prior to discharge.
	Landfillable waste disposed of at the well site, facility or landfill.	Biodegradable waste is composted or incinerated at Lago Agric
		burnt or buried at SSF, buried at Sacha and Auca. Non-biodegradable waste is stored in drums and buried at the landfill.
	Hazardous waste buried.	Same.
	Specific waste oils put in drums and buried.	Samo.
	No recycling of wastes or waste reduction.	Same.
Material Handling	_	Materials inventory list is made at each station.
and Storage	_	No hazardous materials list is made.
		Chemicals stored in drums are on racks.
	-	Waste reduction and pollution prevention plans being develope
Storage Tanks	API standards followed in tank design.	Samo.
	No underground storage tanks in place.	Same.
	Tanks inspected visually for corrosion and leakage.	Same, integrity testing by sonic is conducted.
		All tanks at SSF were assessed in April 1990.
Use/Disposal of	Produced gas gathered by compressor and separators.	Samo.
Produced Gas	Produced gas flared at the production stations.	Same.
	Venting of gas at some well sites.	Same.
	Gas used for turbine fuel.	Same, gas is used for fuels at Lago Agrio and SSF.
	Knockout tanks not incorporated into the flare lines.	Samo.

CA1069491

BB

DENT 0407

TAL TAL

PART-S.VI

• :

Summary of Operational Practices for the Oil Fields for the Period Prior to 1990 and After 1990 (Continued)

.

٤

17 F

11

Containment and	Sonic pipe testing started in the late 1980's.	Continued.
Control of Crude	Spills and leaks detected by volume and pressure loss.	Same.
Oil Spills	No environmental management personnel.	Formation of the Environmental Unit
	No spill response plan.	Same.
Radioactive Materials	No radioactive materials used or generated.	No radioactive materials used or generated.
Noise	Compressors, pumps and generators.	Compressors, pumps and generators.
	No complaints.	No complaints.
Disposal of	Gravity separation process used in the wash tanks.	Samo.
Produced Water	Produced water passed through pits for oil recovery, then discharged into creek or river.	Same for most production stations.
	Discharged water is not tested prior to disposal.	Reinjection system used in SSF and Sacha fields, soon to be
	Irregular produced water testing done at Auca.	started in Lago Agrio.
		Water analysis started prior to disposal.
Disposal of Tank	Material not analyzed prior to disposal.	Samo.
Bottoms and	Disposal onto roads and into pits.	Practice stopped in 1990.
Residual Oil	Volumes of material not recorded.	Same.
		SSF - treatment and recycling of tank bottoms is beginning.

5-<u>19</u>

CONFIDENTIAL

PART-5.VI

Summary of Operational Practices for the Oil Fields for the Period Prior to 1990 and After 1990 (Continued)

Well Site	Spill monitoring program not documented.	Visual spill inspection program every 3 months.
lanagement	Wellhead cellars infilled after completion.	Samo.
	•	Contractor responsible for lease clean-up or debris and
		equipment.
•	Suspended well sites not maintained.	[•] Samo.
		Pits are regularly inspected for damage.
	Workover and completion fluids disposed of into on-site pits.	Workover fluids are stored in tanks.
Produced water disposed of into the jungle river.	Produced water disposed of into the jungle river.	Deep well injection program is in place at SSF and Sacha, soo
		to be started in Lago Agrio.
	Spraying of lease roads with crude oil (no tank bottoms).	Spraying of crude oils stopped around 1991.
	Frac sands and acids disposed of by contractor.	Same.
	All leases have been cleared of excess debris and equipment.	Same, Sacha not all equipment has been cleared from leases.
		Same, SSF - limited water resource protection is practised.
	No protection of water resources.	
	SSF - limited protection measures taken depending on well site	
	location.	Same.
	Limited environmental protection measurements taken.	Suspended and operational wells monitored regularly.
	Well sites monitored irregularly.	Same, SSF - some pits have been infilled while containing
	Little or no maintenance done on the lease pits.	sludge.

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069493

52

PART-5.VI

÷

Summary of Operational Practices for the Oil Fields for the Period Prior to 1990 and After 1990 (Concluded)

Spills assessed for rem Spills detected by pre-	nediation. sure or volume decline.	Sonic testing of pipe integrity. Same. Same.	2 1. s 5. s
<u>Pipeline</u> Management		Inspection done every 3 months with visual servicing.	l inspection during

5-21

1 .

CONFIDENTIAL

PART-5.VI

Summary of Compliance Issues Related to Ecuadorian Law as a Result of Oil Field Development and Operations

Compliance Issues Identified from	Potential Contaminant	Operational Practice Identified from Facility Audi	
Laws and Regulations	Source	Pre-1990	Post-1990
Contamination of Soil	Oil/brine spills from wellheads, flowlines, pipelines.	Yes	Yes
	Dams and drains of tank basins.	Yes	Yes
	Disposal of tank bottoms.	Ycs	Yes
	Disposal of chemicals and containers.	Yes	Yes
	Scopage from pits.	Yes	Yes
Contamination of Water	Oil/brine spills from wellheads, flowlines, pipelines.	Yes	Yes
	Dams and drains of tank basins.	Yes	Yes .
	Disposal of tank bottoms.	Yes	Yes
	Wastes disposal.	Yes	Yes
	Disposal of chemicals and containers.	Yes	Yes
	Overflow and seepage from pits.	Yes	Yes
	Disposal of produced water.	Yes	Yes
Contamination of Air	Burning of oily wastes.	Ycs	Yes
	Incineration of miscellaneous wastes.	Yes	Yes
	Use/disposal of produced gas.	Yes	Yes

1

CA1069495

PET

IDENTIAL 040748

,

PART-S.VI

5-22

·· . i

. 5

(

Summary of Conformance Issues Related to Typical Development and Production Practices for Tropical Rainforest Areas

Facility/Operation	Typical Operational Practices (Pre-1990) in Tropical Rainforest Areas	Operational Practice (Pre-1990) Identified from Facility Audit
Base Camps	Sewage discharged into surface water.	Same
-	Solid waste deposited in landfills or incinerated.	Same
Drilling	Wastes discharged into pits or directly into environment.	Same
Production Operations	Gas flared in pits or short stacks.	Same
·	Produced water passed through pits for oil recovery then discharged into creek or river.	Same
	Spills at well sites left in place.	Same
	Spills at batteries covered with sand.	Same
	Tank bottoms used for dust control.	Same
	Solid waste disposal at oil well sites or landfill.	Same
Pipelines	Line breaks repaired.	Same
•	Clean-up of oil by vacuum truck.	Same
	Spills detected by pressure or volume decline.	Same
	Spills reported and assessed for remediation.	Same

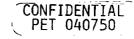
5-23

CONFIDENTIAL PET 040749

<u>PART</u>-5.V

6.1 INTRODUCTION

The main objective of the site assessment was to determine environmental impacts resulting from oil field development and production activities in the Consortium concession area during the period March 5, 1964 to June 30, 1990. Specific objectives included:


- to describe contaminated areas including the location and types of contamination; and
- to collect soil, sludge and water samples to characterize background and contaminated areas.

The site assessment was completed in two phases. Phase I consisted of a field survey of 50% of the well sites in each oil field, 20% of the flowlines and 20% of the length of secondary pipelines. Figure 6-1 (map pocket) shows the layout of the fields and the location of production stations and well sites. The Phase II studies consisted of more detailed surface water studies (see Part 7) and groundwater and subsurface investigations (see Part 8). The location of soil, surface water and groundwater samples collected during Phase II are shown on Figure 6-1.

6.2 METHODOLOGY

6.2.1 Site Selection

Environmental assessment was conducted at 50% (163) of the well sites, 20% (66) of the flowlines, 20% (38 km) of the total length of the secondary pipelines and all of the 22 production stations. The well sites, flowlines and secondary pipelines undergoing environmental assessment were randomly selected using computer software. A summary of well sites and flowlines chosen for assessment is provided in Table C-1, Appendix C. Approximately 50% of the well sites within each field were selected for assessment. The locations of these well sites is shown in Figure 6-1 (map pocket). Secondary pipeline segments selected for assessment are presented in Table C-2, Appendix C. Production stations requiring Phase I assessment are shown in Table C-3, Appendix C. Well sites were randomly selected by generating a random number between 0 and 1 adjacent each well site. Randomly generated numbers greater than 0.5 identified the site chosen for assessment. The selection process was completed for well sites in each of the 16 fields. Flowlines were selected in a similar manner, using only well sites which were selected for assessment as the base.

Earth & Environmental Group

PART-6.V1

6-1

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

and the second	insportationage
Millas	
PETROAMAZONAS	
FILIAL DE PETROECUADOR	
PROYECTOS ESPECIALES Centro de computo cado	
FECHA AUTOR REVISION FECHA AUTOR REVISION	
PETROECUADOR - TEXACO	
DISTRITO ORIENTE	
PLANO DE CARRETERAS Y	
UBICACION DE POZOS CONFIDENTIAL PET 040751	
10	
W g + 61 D Dod Parry E do a Quees Gaps Sept 1 do 1991 aprophic b 9 10 13 C do 10 13 C do 10 prophic b 9 10 13 C do 10 13 C do 10 prophic b 9 10 13 C do 10 10 C do 10 prophic b 9 10 13 C do 10 10 C do 10	
	j j

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069498

To check that the randomly selected well sites were representative of the oil fields, a comparison was made between well sites selected and the well site completion history for the oil fields. This comparison (Figure 6-2) indicates that the selected well sites represent approximately 50% of the wells completed within any given year.

Five of the well sites which were randomly selected for assessment were either not located in the field, not identified on the well site map or had been renamed. These well sites included, SA76, SA90, SA4, SA48 and YU9. Well sites which were selected to replace these five included SAWIW3, SA13, SA34, SSF69 and YU5. One of the assessed well sites (SSF71) was drilled after June 1990 and was therefore not included in the concession. The water injection facility in the Shushufindi field was also assessed in addition to the production stations. The assessment results for this injection facility were reported with the results for production stations.

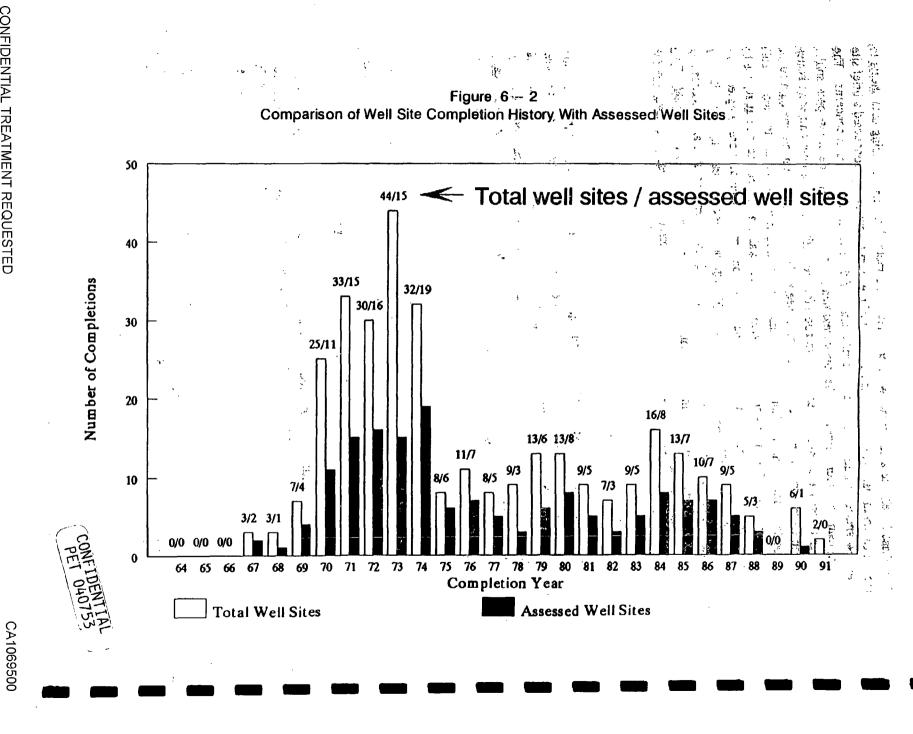
6.2.2 Historical Review

A historical review of production history and site history for all production stations, well sites and pipelines was undertaken prior to the Phase I field survey. The results of the review have been documented in Part 3. The development history, workover record and spill record for well sites and flowlines subject to Phase I assessment are given on Table C-4, Appendix C.

6.2.3 Field Survey

The Phase I field survey was completed by three teams during the period May 18 to June 3, 1993. Each team consisted of one assessor from HBT AGRA Limited and one technical assistant from BACHEQUERAECUADOR Limited.

A standard field assessment data sheet was completed at each site in order to facilitate consistent evaluations of site conditions. Examples of the assessment datasheets are provided in Appendix D. Observations recorded at each site included the following:


- location;
- age and status;
- available environmental documentation;
- site infrastructure;
- waste material present on site;
- general site description;
- adjacent land use;
- pit contaminant inventory;
- storage tank contaminant inventory;
- well head contaminant inventory;
- process equipment contaminant inventory;
- sample summary;
- photographic record; and
- a site sketch.

PART-6.VL

6-3

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069499

CONFIDENTIAL PET 040752

The Phase I well site assessments were completed in a methodical manner using data sheets to record observations. At each assessed site, one of the team members first conducted a brief site overview and identified the physical characteristics of the site and contaminant concerns. The second team member reviewed the pre-assessment summary which identifies past spills, workover records and environmental information for the well site. The environmental issues were then characterized and entered on the data sheets. Where possible, a hand-operated auger was used to estimate the vertical extent of staining resulting from spills and to identify soil materials present. The site reconnaissance also included walking around pits and auguring to determine if seepage of contaminants from the pit was occurring. One or more samples were obtained from some of the assessed well sites. A photographic record of each assessed site was completed. Some of the photos taken during the Phase I assessment program are presented in Appendix J. Sketch maps showing the location of features were completed in the field. The information collected on the data sheets was evaluated and entered onto a computer database for further evaluation.

6.2.4 Soil and Water Sampling

Soil and water samples were collected during the Phase I assessment program to help characterize any contamination. The soil samples were obtained using a hand auger and placed in containers for laboratory analysis. Each sample was assigned a unique number and labelled prior to placement in a cooler for shipment. All sample numbers were listed on a chain of custody form which described the contents of each cooler including the size and nature of each sample. The cooler was sealed for transport to the HBT Analytical Laboratory in Edmonton, Alberta, Canada.

6.2.5 Laboratory Analysis

Samples collected during the Phase I assessment program were analyzed at the HBT AGRA Analytical Laboratory. A description of the analytical methods used in given in Appendix G.

6.3 EXISTING LEVELS OF SURFACE DISTURBANCE

The concession is situated in an area that was essentially undisturbed rainforest prior to development. Initial exploration activities began in 1964 and the first producing wells were completed in the Lago Agrio field in 1967. Over 300 wells, 22 production facilities and five work camps had been completed by 1990. The concession covers approximately 400,000 hectares.

Typically, oil field exploration and development activities result in surface disturbances. The disturbance is generally in the form of removal of vegetation and preparation of the surface for roadway and site construction. Oil field exploration and development activities which are considered to be the main causes of surface disturbance include the construction of:

PART-6.V1

6-5

CONFIDENTIAL PET 040754

- roads;
- well sites;
- production stations;
- pipelines; and
- power transmission lines.

· · · ·

The development of the oil field has resulted in significant migration of people into the area and subsequent use of the land for agricultural activities. Increased access has opened the area to unrelated land uses such as logging, light industry and tourism. This report considers only physical disturbances related to hydrocarbon production activities.

A description of the existing levels of surface disturbance is provided in the following sections.

6.3.1 Roads

Well sites and production stations are accessible via a network of primary and secondary roads and well site access roads. Primary roads provide access into fields, secondary roads into groups of well sites and access roads into individual well sites. The extent of roadway development was determined by measurements made from an oil field map at a scale of 1:100,000 provided by PETROECUADOR. Table 6-1 shows the total estimated area of forest developed for roads as a result of oil field exploration and development activities. Approximately 310 kilometres of primary roadway had been in use by 1990.

The width of roadway corridors varies from approximately 20 metres for well site access roads to about 50 metres for primary roadways. Most of these roadways serve a dual purpose, pipelines usually occupy a portion of the roadway corridor.

The roads were constructed by cut and fill methods and using granular materials extracted from river beds. Primary and secondary roads are often coated with tank bottoms and residual oil. The application of oil is used to reduce road dust and limit the erosion of granular materials used in construction.

Vegetation has become reestablished in the unused portion of roadway corridors throughout the concession. Corridor vegetation is generally in the form of grasses and shrubs. Manual control of vegetation is common. The use of herbicides to control vegetation was not noted.

PART-6.VI

CA1069502

CONFIDENTIAL PET 040755

TABLE	6- 1
-------	-------------

an a tha a that a star a s	acility	Initial Cleared Area (ha)
Primary Roads		1,600
Well Site Access Roads		_400
	TOTAL	2,000
Production Stations:		
Lago Agrio	Central Station	80
	North Station	10
Parahuacu		6
Atacapi		3
Guanta		8
Dureno	,	1
Aguarico	•	6
Shushufindi	Central Station	50
	North Station	13
	South Station	15
• •	Southwest Station	16
Sacha	Central Station North #1 Station	47 20
	North #2 Station	9
	South Station	5
Culebra		2
Yulebra		3
Yuca		12
Auca	Central Station	30
	South Station	· 9
Auca Sur		2
Cononaco		8
	TOTAL	355
Well Sites (325 sites @ (0.75 ha)	245
	GRAND TOTAL*	<u>2.600</u>

Estimated Area of Forest Cleared Within the Concession Area as a Direct Result of Oil Field Development and Production Activities

*Excludes transmission line corridors and pipeline corridors which are not adjacent to primary roads or well site access roads.

PART-6.VI

CONFIDENTIAL PET 040756

Bridges have been constructed to cross numerous rivers and streams in the study area. The smaller streams and rivers are usually spanned with "bailey" type bridges. The larger rivers, particularly the Aguarico in the north and the Napo in the south, are spanned with engineered bridges.

6.3.2 Well Sites

The well sites are generally equipped with a single well head, an aboveground flowline, a meter station and a transformer. An open drill sump/workover pit is also present at the majority of well sites. The estimated size of each of the assessed well sites is presented on Table E-1, Appendix E. Generally, the current size of the well sites averages less than one hectare. An estimate of the original size of the well site was attempted during site assessment. By determining the current size and the original size of the well site, an estimate of the amount of natural vegetation regeneration could be established. However, the presence of dwellings and agricultural activity adjacent to the majority of well sites made it difficult to determine the original size of the well site. Settler dwellings are located adjacent to a large number of well sites (Table E-1, Appendix E). It was noted that natural regeneration of vegetation adjacent to pits has occurred at a large number of sites.

Abundant vegetation and rapid regeneration in vegetation to disturbed areas has kept erosion at a minimum. However, erosion was observed at 15 of the assessed well sites. Table 6-2 provides a description of the soil erosion observed at well sites.

6.3.3 Production Stations

Twenty-two production stations and one water injection station were assessed. The production stations contain equipment necessary to separate water from oil, store crude oil and dispose of produced water to the environment. The equipment and processes used at each station are described in detail in Section 5.0. Four of the production stations reprocess product delivered from outlying stations. These four larger stations are located in Lago Agrio, Shushufindi, Sacha and Auca.

The size of cleared forest at each of the production stations is presented in Table 6-1. An estimate of the cleared forest was determined using 1:60,000 scale air photos taken in July 1990. The process area is separated from the flare and separation pit area by several hundred metres. This portion of land contains a corridor for flare lines and effluent water pipelines. The area is usually well vegetated with grasses. Reforestation projects are currently in place for this area at some of the production stations. Erosion was noted at 9 of the 23 assessed stations. Table 6-3 provides a description of the erosion observed.

PART-6.V1

CA1069504

CONFIDENTIAL PET 040757

Table 6 – 2 Description of Erosion at Well Sites

2

Assessed		Potential Source
Well Site	Description of Erosion	of Sediment
		Yes / No

LA	26	Minor erosion of well site fill material into plantation.	No
PH	5	Excessive exposed soil on well site.	No
AT	1	Excessive exposed soil on two sides of well site.	No
AT	3	Minor erosion along access road cut.	No
GU	5	Severe erosion and sedimentation over former pit.	Yes
SSF	B64	Severe erosion of slope adjacent well site.	Yes
SSF	68	Erosion and sedimentation into stream.	Yes
SA	9	Erosion present from well site into stream.	Yes
CU	2	Significant erosion adjacent former pit.	No
YB	2	Minor erosion along access road.	No
YUS	1	Extreme erosion adjacent former pit.	No
AU	19B	Exposed soil and eroding drainage ditch.	No
AU	24	Minor erosion of banks along well site boundary.	No
CN	11	Significant erosion along adjacent slope.	No
CN	12	Significant erosion in pit area.	No
		-	

PR DHOT 58

CA1069505

ł.

Table 6 - 3Description of Erosion at Production Stations

None None Some minor rill erosion of nonvegetated disturbed areas including area adjacent pit and mud spill area. Severe guily erosion and exposed soil at southwest corner of site (adjacent pits). Potential for increased erosion on nonvegetated slopes is high. None noted.	No No Yes No
None Some minor rill erosion of nonvegetated disturbed areas including area adjacent pit and mud splil area. Severe guily erosion and exposed soil at southwest corner of site (adjacent pits). Potential for increased erosion on nonvegetated slopes is high. None noted.	No Yes
Severe guily erosion and exposed soil at southwest corner of site (adjacent pits). Potential for increased erosion on nonvegetated slopes is high. None noted.	Yes
None noted.	
	No
Severe rill and guily erosion at former pit and stack locations.	Yes
None	No
None	No
Large area of exposed soil in pit and flare areas.	No
None	No
	No No
ral th west Inj. ral # 1 # 2 th	th Large area of exposed soil in pit and flare areas. None None None None None None None None

6.3.4 Camps and Supply Depots

Camps and supply depots are located at Auca, Lago Agrio, Shushufindi, Sacha and Coca. All camps and supply depots, with the exception of the one at Coca, are located adjacent to production facilities and occupy the same large clearing. The camps are intricately landscaped and include recreational facilities for guests and workers. Supply depots store pipe and other equipment necessary to maintain and develop the oil field. Scrap yards are also in use at the four main stations. Used pipe, empty drums and unusable vehicles are often stored in these yards.

6.3.5 Pipelines

Flowlines deliver produced fluids from well sites to production stations while secondary pipelines deliver crude oil between stations located in the concession.

The majority of flowlines are located in narrow corridors immediately adjacent to roadways, thus minimizing the need for additional right-of-way construction. Generally, well site access road corridors contain a single flowline, secondary roads up to 9 flowlines and on primary roads up to 14 flowlines were observed present adjacent to the roadway. The majority of these pipelines are located aboveground. It was observed that these flowlines come into direct contact with the ground over significant distances. Vegetation control along pipeline rights-of-way is achieved manually. Vegetation is well established along virtually all of the assessed corridor.

6.3.6 Transmission Lines

Many well sites are equipped with a submersible electric pump. Power transmission lines are therefore required for those well sites. Transmission line corridors were not subject to assessment, however, it was noted that most transmission lines do not utilize roadway corridors. Where electrical power is in use, it is assumed that transmission line corridors occupy generally the same amount of corridor as do roadways.

6.4 EXISTING LEVELS OF CONTAMINATION

Oilfield development and production activities have caused contamination of soil and water at locations throughout the concession. Contamination of soil and water was observed at well sites, production stations and along roadways, flowlines and secondary pipelines.

6.4.1 Site Assessment Observations

Site assessment observations of contamination are summarized in the following sections. The observations are presented separately for well sites, production stations, flowlines and secondary pipelines. The observations include an estimate of the volume of contaminated soil associated

PART-6.VI

PET 040760

CONFIDENTIAL

65

Table 6 – 3Description of Erosion at Production Stations

Production Station			
Culebra		None	No
Yulebra		None	
Yuca		Minor to moderate rill and gulley erosion in pit discharge and flare areas.	
Auċa	Central	Minor rill erosion on several exposed banks.	No
	South	Moderate to severe erosion in pit areas and at pit discharge pipe.	Yes
Auca Sur		Minor rill erosion in former pit area.	No
Cononaco		None	
Dureno		Minor rill erosion occurring below pit discharge pipe.	Yes

(a) Noted as "Yes" if sediment was entering a stream as a result of on-site erosion.

IDENTII

with each identified spill. The volume estimate was calculated using a visual estimate of the size of each spill and limited hand auger borings to determine the vertical extent of contamination. Observations on the use of oil on roads is also presented.

6.4.1.1 <u>Well Sites</u>

Table F-1, Appendix F provides a summary of contaminant observations for all assessed well sites. The spills have been categorized as produced fluid spills, refined product spills, solid waste and spills associated with pits. Produced fluids (crude oil and produced water) spills have been identified according to source. Produced fluid spill sources have been identified as the well, flowline, pump, tank or flare. Solid waste is identified as either domestic solid waste or industrial solid waste. Refined product spills are used oil, chemicals or fuel. Pits are identified as being open or covered. Spills which have migrated off the well site and contaminants which have migrated beyond the confines of a pit have also been noted. The total number of each type of spill is given at the base of the table.

Produced Fluids Spills

Table F-2, Appendix F provides a description of produced fluid spills identified at well sites, flowlines, pumps, tanks and flares. Estimated dimensions for each identified spill are given. Spills which have migrated off the well site are also identified. An estimate of the total spill area and volume is provided at the base of the table. Thirty-two spills have been identified as migrating off the site.

Spills which can be attributed to a broad range of sources have been identified as well site spills in Table F-2, Appendix F. These sources may include spreading of oily wastes originating offsite, well workovers, drilling or the disposal of oily wastes originating off-site. Well site spills have occurred at 158 of the 163 assessed sites. The majority of these spills were small and affected the area immediately around the wellhead. These spills can usually be attributed to well workovers and may have also occurred during drilling. Most of these spills were confined to the well site. The actual extent of individual spills was often difficult to determine. Spills are often covered with sand and sand and gravel forms the base of the well pad. These materials are difficult to penetrate using the hand-operated equipment available for the reconnaissance level assessment. Where penetration was possible, it was noted that up to 30 cm of granular materials have been placed over a clay base. Contaminant migration from these well site spills into the highly plastic red clays was generally observed to be minimal.

Thirty-nine of the produced fluid spills identified originated along a flowline (Table F-2, Appendix F). Thirteen of these spills have migrated off-site. Most of the well sites are not equipped with surface pumps. Spills originating at pump installations were observed at seven well sites. Three of these spills have migrated off-site. Tanks are normally not in use at well

PART-6.VI

CONFIDENTIAL PET 040762

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

sites; spills originating at tanks were observed at only five sites. None of these spills were observed to have migrated off-site. Only one flare related spill was observed.

Refined Product Spills

Table F-3, Appendix F provides a description of refined product spills identified at well sites. Estimated dimensions for each spill are given and spills which have migrated off the site have been identified. An estimate of the total spill area and volume is provided at the base of the table. Eight refined product spills have been observed to migrate off the site.

Refined products are not in use at all well sites. Spills of either used oil, chemicals or fuel were identified at 22 well sites. Used oil spills generally originate at pump or compressor installations which require periodic motor oil changes. A common practice is to dispose of used oil on-site.

Chemicals, generally in the form of corrosion inhibitors, were observed to be in use at 35 of the 163 assessed well sites. Elevated chemical tanks are usually located in the fenced well site transformer compound. Spills originating from these chemical tanks were observed at six well sites. The spills were generally small and confined to the area below the tanks.

Fuel tanks are usually present at sites where pumps, generators or compressors are in use. Diesel spills were identified at five well sites. Two of the fuel spills have affected off-site land.

Solid Waste

Disposal of solid waste was observed at 46 of the 163 assessed well sites. Solid wastes were characterized as having either industrial or domestic origins. Industrial waste included used oil filters, pipe, pipe couplings or general metallic debris. Fluid spills were often associated with the disposal of used oil filters. Domestic waste was generally in the form of wood, paper, plastic, metal and household garbage.

Solid industrial waste is present at 31 well sites. The wastes are described in Table F-4, Appendix F. Most of these wastes are in the form of filters. Table F-4, Appendix F also provides a description of the domestic solid wastes which are present at 21 of the assessed sites.

Pit Wastes

The use of well site pits to contain oily waste fluids was observed at 125 of the assessed well sites. Table F-5, Appendix F provides a description of contamination associated with well site pits. The table identifies the status of the pit or pits for each assessed well site. Several variables were used to characterize a pit. These variables include:

• open or covered with soil;

PART-6.VI

CA1069510

CONFIDENTIAL PET 040763

- oily wastes present or not present; and
- migration of contaminants observed beyond the confines of the pit.

A summary of the number of pits exhibiting each variable is given at the bottom of Table F-5, Appendix F. A total of 126 open or closed pits contain oily waste. Oily waste is confined within 50 of the pits and was found to be migrating in 76 cases. The estimated size of each pit was determined while in the field and is presented on Table F-5, Appendix F. Forty of the pits were estimated to be larger than 1,000 square metres, 20 between 500 and 1,000 square metres and 88 under 500 square metres in size.

Observations on the condition of the oil in open waste filled pits were made while in the field. The oil had a tar-like viscosity in 36 of the pits and was fluid in 52 of the pits. The thickness of oil in the pits varied from a thin film to a maximum estimated at 1 metre. In the majority of the pits containing waste fluids, the oil was estimated to be less than 5 cm thick.

Although it is reportedly common practice to void excess water out of the pits via a siphon, siphons were found to be present in only 14 of the pits. Dense vegetation surrounding most of the pits likely obscured a large number of siphon installations.

Evidence of seepage was noted at 69 of the pits. The presence of oily soil at covered pits, evidence of lateral migration of contaminants and oily discharge from siphons were considered to be indicators of seepage. Seepage or pit discharge to streams was observed to have occurred at 28 pit locations.

The presence or lack of berms around pits was also noted. Most of the pits were constructed by excavating to a depth of between 1 and 2 metres. The inside walls of the pits are generally not vertical but taper gradually to the middle. Berms were generally indicated as being present for pits constructed in this manner.

None of the assessed pits appear to have been constructed recently. Most appear to have been present for a considerable time and were probably constructed during or shortly after well completion.

Forty-six of the pits were covered at the time of assessment. Covering dates are not known; however, a relatively large number are believed to have been covered since 1990. Of the 46 covered pits, 33 were found to have oily waste present in soil in, or beyond the former confines of the pit.

Hydrocarbon containing sludges are present in all pits which contain oil. The thickness of these sludges was estimated to be less than one metre on average. The degree of oil seepage into soil below pits was not investigated during the Phase I assessment.

PART-6.VI

CONFIDENTIAL PET 040764

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

The wa materials associated with open and covered pits constitute the largest volume of waste materia present at well sites.

6.4.1.2 Flowlines

Descriptions of contamination associated with flowlines are presented on Table F-6, Appendix F. These observations exclude the section of flowline which is present on the well site. Observations were made for the length of flowline present from the edge of the assessed well site to the production station boundary. Spills associated with flowlines were identified along 11 of the 66 assessed routes.

Regeneration of vegetation along pipeline corridors has occurred along the majority of routes. Vegetation is controlled manually. Crews of up to ten workers were observed cutting vegetation below and around flowlines. Up to 14 flowlines were noted as being present in a single corridor. Some of the flowlines are elevated above ground using a series of steel support posts. Some flowlines have no support and are in contact with the ground over much of the route. Abundant dense vegetation in most flowline corridors made it difficult to detect all spills.

The observed method of line repair made it difficult to associate possible historic spills with evidence of line repair. Repairs were not easily detectable. The observed method of line repair is detailed at the bottom of Table F-6, Appendix F.

6.4.1.3 Production Stations

Twenty-two production stations and one waterflood facility were subject to Phase I assessment. Contamination observed at these sites is presented in Table F-6, Appendix F. The observed spills are characterized according to spill source, spill type, estimated dimensions, a description of on-site impacts and a description of off-site impacts. Descriptions of industrial solid waste and domestic solid waste, if present, are also provided on Table F-7, Appendix F.

Spills were identified around manifolds and separators, wash and surge tanks, pumps and compressors, fuel and chemical tanks, flare lines and flare stacks, process area drains and sumps, generators, vehicle maintenance areas and pits. The process flow diagram presented in Section 5 (Figure 5-1) provides a complete list of process related equipment present at each production station.

Spill types have been identified as either produced fluids, used oil, chemicals or fuel. The estimated dimensions of the spill are provided where possible. The actual size of spills was difficult to determine. In many instances, spills may migrate below equipment or into inaccessible off-site locations.

6-16

CONFIDENTIAL PET 040765

PART-6.V1

SDNY - 04 CIV 8378

Manifold and Separator Spills

Table F-7, Appendix F describes separator spills at 15 of the 18 assessed stations which are equipped with separators.

Spills associated with manifolds and separators were generally small and confined to the area immediately around the separators. These surficial spills were routinely covered with sand. Separator spills which have affected off-site areas are located at Auca South, Sacha South, Sacha North #2 and Shushufindi Central stations. The off-site separator spills identified for Sacha South, Sacha North #2 and Shushufindi Central were a result of sump overflows. A sump is often present in the separator area. It is constructed of metal or concrete, is generally about one metre square and located below ground level. When full, the contents are normally removed and disposed of in the wash tank. However, sump overflows had occurred, typically to an onsite drainage system which discharges off-site. Sump overflow at the Sacha North #1 station appears to have resulted in groundwater contamination. Saturated sand with a distinct hydrocarbon odour was encountered in a hole hand augured to a depth of 2 metres in this area. A 5,000 barrel oil spill was reported to have occurred in 1992 as a result of separator malfunction or sabotage.

Wash and Surge Tank Spills

Table F-7, Appendix F describes 29 spills related to wash or surge tanks. These spills were usually confined to the area within the bermed enclosure; however, ten tank related spills have affected off-site land and/or water. The mechanism which allows off-site discharge of tank related spills is a drainage system comprised of open ditches, berm drains and sumps. This system of drains is often interconnected with process area drains which ultimately discharge to off-site locations. Tank spills appear to have resulted in shallow groundwater contamination at the Sacha South station.

Tank bottoms (oily sludge accumulations at the bottom of tanks) are periodically removed to a pit within the bermed area prior to disposal. This practice may have resulted in some of the spills associated with wash and surge tanks.

A gas boot (gravity separation of gases) is usually attached to the wash tank. Condensates (oily fluids) can accumulate in piping associated with gas boots. Small spills below these pipes were confined to areas inside the bermed enclosure and were identified as wash tank related spills.

The condition of product storage tank berms is described in Table F-8, Appendix F. Product storage tanks are not enclosed within a bermed area at the Yulebra, Auca Sur or Dureno stations. Generally, the condition of the tank berms was noted as good if the asphalt cover was intact and no breaches were observed. The berm condition was rated as poor at the Aguarico, Shushufindi Southwest, Sacha South, Yuca and Auca Central stations. All of the berms were

PART-6.V1

noted as having drain control. The enclosed area was calculated to be sufficient to contain the contents of the tank unless the berm had been breached.

Pumps and Compressors

Table F-7, Appendix F describes 18 spills related to pumps or compressors. Pumps and compressors are motor driven and require periodic oil changes. Some of the pumps in use are electric and therefore require no oil changes. Pumps, either electrically or diesel fuel driven are located at all stations. Gas compressors were noted at eight stations. Sumps, intended to collect and drain used oil and/or crude oil spills, are located adjacent to pumps and compressors.

The spills associated with pumps and compressors are usually quite large. Twelve of the 18 identified spill areas were observed to have migrated off-site. Seven of the 12 spills which have affected off-site areas have done so via discharges to ditches, sumps or drains. The practice of discharging used oil to the environment has resulted in a particularly large spill at the Shushufindi water injection station. It was noted that pump workover at the Shushufindi South station resulted in oil discharge to a nearby river via a drainage ditch.

Fuel and Chemical Spills

Table F-7, Appendix F describes 16 fuel spills and 6 chemical spills. Fuel tanks are located at central stations and at stations where fuel is required to operate pumps, compressors or generators. Chemicals are in use at most stations. Products which have been identified as chemicals include solvents and corrosion inhibitors.

Fuel spills have contaminated groundwater at the Shushufindi Central station. Groundwater exhibiting hydrocarbon odours was encountered in a hole hand augured to a depth of 2 metres in this area. None of the identified fuel spills are believed to have contaminated off-site areas; however, a large fuel spill at the Sacha Central station has entered a ditch adjacent a plantation. Fuel spills were often identified outside and inside the bermed tank enclosures.

A large number of chemical spills have occurred within the drum storage compound at the Sacha Central station. The compound is located adjacent to land used for agricultural purposes. Leakage from chemical containing tanks at the Shushufindi Southwest station has resulted in chemicals entering a stream via sump and ditch drains. The groundwater below a methanol tank at the Shushufindi Central station appears to be contaminated. The methanol tank is located in the vicinity of diesel fuel tanks which have contributed to subsurface contamination in this area. Contaminated groundwater was encountered at a depth of 1 metre.

PART-6.VI

6-18

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069514

CONFIDENT PET 0407 ł

Flare Lines and Flare Stacks

Flare systems are located at most production stations. Table F-7, Appendix F identifies 22 spill areas which are associated with flare lines or flare stacks. The spills which have occurred below flare stacks were difficult to assess due to the safety concerns related to inspecting the area while the flares were in operation. Flare condensate knockout systems do not appear to be in use for any of the flares. Rather, condensates are allowed to drain from the bottom of the stack or flare and accumulate on the ground surface. A large number of the flare systems allow fluids to migrate to pits which are often present immediately adjacent the flares. The oil stained area below flare stacks was often quite large. Horizontal flares at the Shushufindi North station have emitted liquid crude into an off-site wetland.

The condition of flare stacks is described on Table F-8, Appendix F. Flare stacks at Aguarico, Shushufindi South and Southwest, Yuca and Auca Central stations are rated as poor because the stacks were not vertical, appeared bent or appeared burnt (i.e., ragged metal). The flare stacks at the remainder of the stations were rated as good.

Complete combustion was rated as "no" if smoke was emitted from the stack at any time during the assessment. Complete inspection of flare stacks was not possible because of the intense heat and safety concerns related to flare stacks.

Process Area Drains and Sumps

The larger stations have been equipped with sumps, surface drainage ditches and underground pipe drains. Although oily accumulations of wastes in sumps are disposed in the process (i.e., wash tank), it was noted that overflow has often occurred. The overflow generally affected the area around the sumps; however, when sump discharge is to ditches, off-site areas have been affected. Spills related to sumps and drains have been identified as being associated with adjacent process area equipment (i.e., separator, pump, compressor).

Generator Related Spills

Generator related spills were identified at Auca Central, Auca South and at Auca Sur stations. Table F-7, Appendix F provides a description of the spills. The used oil spill at the Auca South station appears confined to the area adjacent the equipment; however, sump overflow to wastewater pits was noted. Generator related spills occur during changes of motor oil.

Vehicle Maintenance Areas

Vehicle maintenance centres are located only at central stations. Table F-7, Appendix F identifies spills which have occurred in four vehicle maintenance areas. Large spills have resulted from the practice of discharging used oil on the ground at the Lago Agrio, Shushufindi,

PART-6.V1

CONFIDENTIAL PET 040768

Sacha and Auca Central stations. The wash water is generally contaminated with oil that has accumulated on vehicles as a result of road oiling practices.

Used oil and wash water is discharged to a ditch which drains to an off-site location at the Lago Agrio Central station. A large accumulation of used oil is present on the ground adjacent the Sacha Central station vehicle maintenance yard. Used oil and wash water enters a ditch and runs off-site at the Auca Central station. Although accumulations of used oil were not noted around the maintenance area of the Shushufindi Central station, waste wash water is discharged off-site via a drainage system.

Production Station Pits

Table F-9, Appendix F describes contamination associated with 80 pits located at production stations. The information collected for each pit includes:

- pit status;
- pit use;
- separation stage number (if applicable);
- estimated dimensions including area, thickness of oil and depth of water;
- presence of oily sludge, overflow, berms, ditches, siphons, seepage and discharge; and
- the amount of freeboard remaining.

Additional comments related to each pit are also provided on the table.

Pit status is defined as either open, closed or breached. The majority (74) remain open and in use. Two pits located at the Aguarico station appear to have been breached or destroyed and are no longer in use. Six pits have been covered.

Fifty-four of the pits are used as holding and separation ponds for the disposal of produced water. Crude oil is present in the produced water discharged to these pits. The main function of the pits is to allow the crude oil to rise to the surface where it can be periodically collected and reintroduced into the process (i.e., wash tank). The thickness of oil present on the surface of the water in these separation pits ranged from a thin film to several centimetres. Oily sludge is present in all of the pits. The final stage separation pit at most of the stations is equipped with a siphon. Produced water is being discharged to the environment in all cases. Contamination of soil and water below the discharge pipe was noted in all cases. The degree of contamination noted was variable. The discharge of oily produced water to the environment has been recently discontinued at Yulebra, Culebra and Auca Sur stations.

CONFIDENTIAL PET 040769

PART-6.V1

6.4.1.4 <u>Secondary Pipelines</u>

A description of observed contamination along assessed segments of secondary pipeline is presented on Table F-10, Appendix F. Fifteen segments averaging over 2.5 km in length were assessed. A spill was observed along only one of these fifteen segments. A small spill below a valve was noted on the segment located between the Shushufindi station and Aguarico station. Abundant vegetation regeneration has occurred along the pipeline corridor. The secondary pipeline corridor is located adjacent existing roadways over much of its length.

6.4.1.5 <u>Roads</u>

Oily waste has been applied to roads over a large portion of the concession. The oil is applied to the road surface by a tanker truck equipped with a spraying device. The oil is sprayed directly onto the road surface and is not worked into the underlying materials. Road application of oily waste appears to have occurred mainly on primary roads. Oil had been recently applied to segments of road in the assessed portions of the Atacapi, Parahuacu and Guanta fields. No evidence of oil migrating to roadside ditches was observed.

A large amount of oil had recently been applied to the segment of main road between the Aguarico River crossing and the Guanta field junction. Long stretches of primary road in the Sacha field and between the Sacha field and the town of Coca had recently been oiled. The main road through the town of Sacha received an extremely large amount of oil. No recent applications of oil were noted in the Shushufindi field or fields located south of the Napo River.

It was noted that road application of oil continues over bridges. Inspections of several oiled bridges revealed that oil is present over the entire bridge and that some spillage to the stream below may have occurred. Roadside vegetation did not appear to have been impacted from application of oil at any of the inspected locations.

6.4.2 Site Assessment Analytical Results

Table G-1, Appendix G provides a list of soil and water samples collected and identifies those samples for which selected analytical tests were performed. A total of 196 samples were collected and analyzed. The table also identifies the depth interval from which the samples were obtained, provides an indication of the degree of hydrocarbon odour, identifies the sample matrix material and the general area in which the sample was obtained. The number of samples selected for each analytical test is provided at the base of the table. The analytical tests performed were generally consistent with parameters for which assessment criteria were developed. The criteria cited are those presented in the report entitled "Final Assessment Criteria for an Environmental Evaluation of the PETROECUADOR Consortium Oil Fields". Parameters which were analyzed but which are not covered by the reported criteria included: electrical conductivity; benzene, toluene, ethylbenzene, xylenes (BTEX); and specific metals

PART-6.V1

CONFIDENTIAL PET 040770

including aluminum, calcium, iron, magnesium, manganese, phosphorus, potassium, sodium and tellurium. The inclusion of these analytical tests was considered necessary to evaluate potential remediation options described in the Environmental Management Plan (Volume ID.

6.4.2.1 Soil Samples

Oil and Grease

Table G-2, Appendix G presents the results for oil and grease tests performed on 165 soil samples. One hundred and fifty-six (95%) of the samples contain oil and grease above the average background level. Ninety-four (57%) of the samples contain oil and grease at a level which exceeds the criterion value of 5,000 $\mu g/g$. The results show that a wide variety of sampled areas contain oil and grease levels which exceed the criterion.

Soil pH

A total of 34 samples were tested for pH. Twenty-one of the samples were representative of contaminated soils. The remaining 13 pH results were obtained for soils representing background conditions. Background pHs range from 4.8 to 7.5 and average 5.5 (Table G-3, Appendix G). The proposed assessment criteria for pH is in the range of 6.0 to 8.5. Background soil pHs were therefore used to adjust pH criterion to a range of 4.5 to 7.5

The adjusted criteria for pH was marginally exceeded in 4 of the samples tested. These 4 samples also exceeded the criteria for oil and grease content. Nine of the 17 soil samples which exhibited pH levels within the range of the adjusted criteria exceeded the criteria for oil and grease.

Metals

Tables G-4 and G-5, Appendix G present the analytical results for metals in soil. Table G-4 includes metals for which assessment criteria are available. A total of 25 samples were analyzed. Nine of the samples were representative of background conditions. The remaining 16 samples were representative of soils containing hydrocarbon. In most cases, values of the metals: As, Hg, Se, Sn, Ba, Cd, Co, Cu, Pb, Mo, Ni and Zn were below criteria values. Only one result marginally exceeded the criteria value for tin. Two of the samples showed elevated levels of copper, lead and zinc; however, these levels were below criteria.

Table G-5, Appendix G presents the analytical results for metals for which criteria are not available. Four of the samples show levels of aluminum considerably higher than those found in background soils. It is not clear whether these elevated aluminum levels are a result of oil field operations. The most elevated aluminum level was for a reported drill mud spill at the Parahuacu production station. Criteria are not available for aluminum. Canadian criteria are CONFIDENTIAL PET 040771

PART-6.VI

CA1069518

presented for two of the metals (beryllium and vanadium). None of the samples tested showed elevated levels for either of these metals.

Cyanide, Sulphur, Bromide and Fluoride

Table G-6, Appendix G presents the results for nine samples which were tested for cyanide, sulphur, bromide and fluoride. One of the samples tested was representative of background soils while the remaining six were representative of soils containing hydrocarbon. None of the tested samples exceeded the criterion established for cyanide, bromide or fluoride. Five of the nine samples tested for total sulphur exceeded the criterion value. These samples were representative of pit discharge areas, pits and a spill at a crude oil tank drain.

Electrical Conductivity

Table G-7, Appendix G presents results for 34 samples tested for electrical conductivity. Average electrical conductivity for 13 samples representative of background soils is 0.02 mS/cm. Three of the samples tested exceeded the Canadian criteria of 2.0 mS/cm. Two of these samples also exhibited elevated copper, lead and zinc levels.

Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)

Table G-8, Appendix G presents the results for eight samples which were tested for BTEX. The samples which were tested for BTEX exhibit elevated hydrocarbon levels and represented fuel spills, pits and a waste discharge area. Canadian soil quality criteria for BTEX were used. All BTEX parameter criteria were exceeded in two of the samples tested. One of the BTEX parameters (benzene) exceeded criteria in one additional sample. One of the samples which exceeded criterion for all BTEX parameters represented material present in a large waste pit located near the Shushufindi Southwest production station.

In summary, the analytical data suggest that the principle contaminant in analyzed soils is oil and grease. The data provide no evidence of widespread contamination by metals. Limited testing indicates that some of the samples analyzed contain some of the more mobile and toxic hydrocarbon compounds.

6.4.2.2 Water Samples

Table G-9, Appendix G presents water chemistry results for ten pit water samples. Six of the samples were obtained from produced water pits at production stations. The remaining four samples were obtained from pits located at well sites. Two additional pit water samples were broken in transit.

PART-6.VI

6-23

CONFIDENTIAL PET 040772

Eight of the ten samples exceeded at least one of the criteria values. None of the samples exceeded criterion values for pH or total phosphates. None of the well site pit samples exceeded the criterion for chloride. Produced formation water contains high levels of chloride. The relatively low level of chlorides found in well site pits may be a result of rainwater having replaced formation water in these pits. All but one of the produced water pit samples exceeded the criteria for chlorides, total suspended solids, total dissolved solids and sulphides. Six of the samples, including two from well sites and four from produced water pits exceeded the criterion for total petroleum hydrocarbons.

6.5 SUMMARY OF IMPACTS

The environmental liabilities identified from the site assessment were rated as to their environmental impact using the scoring system given in Table 6-4.

TABLE 6-4

	Scoring System Used to Rate Potential Environmental Impacts
Rating	Description
Low	Environmental damage that can be naturally corrected or cleaned up on the scale of hours to days. Spills, regardless of size, are confined to the site. No oil containing pit is present.
Medium	Environmental damage that even after mitigative action will take days to weeks to regain pre-event conditions. Spills, regardless of size, have migrated off-site. Pit containing oil is present. Contaminant appears confined within the pit.
High	Environmental damage that may require extensive mitigative action or may be of long- term duration before recovery. Pit containing oil is present. Contaminants appear to have migrated out of the pit.

6.5.1 Well Sites

The results of this rating for the well sites are given in Table 6-5. Of the 163 well sites assessed, environmental liabilities at 51 (31%) sites were rated as having a low impact, 29 sites (18%) a medium impact, 66 sites (41%) a high impact and 16 sites (10%) no impact.

6.5.2 Production Stations

The results of the impact assessment rating for environmental liabilities identified at production stations is given in Table 6-6. Liabilities associated with separation pits were generally rated as high. Spills associated with a chemical tank and fuel storage tanks at Shushufindi Central Station were also rated high because of the potential for contaminant migration. Spills associated with the pump/compressor at Shushufindi Central and Shushufindi South Stations were also rated high because they have migrated off-site. Spills from the wash tank and surge tanks at Sacha South were rated as high because of the potential for groundwater contamination.

PART-6.VI

6-24

CA1069520

CONFIDENTIAL PET 040773

Table 6 – 5 Environmental Impact Rating for Contamination at Well Sites

Asse	essed Site	Rating (a)	Comments
LA		Medium	Pump spill off-site.
LA	2	Low	Pad spill. Used oil spill.
LA	5	Low	Pad spill.
LA	6	_	No spills noted.
LA	8	Low	Pad spill.
LA	9	-	No impact noted.
LA	10	Medium	Well pad spill. Flowline spill off-site.
LA	11B	Low	Well pad and flowline spills.
LA	12	Low	Well pad and flowline spills. Used oil spill.
LA	17	<u> </u>	No spills noted.
LA	19	-	No spills noted.
LA	20	Low	Well pad spill.
LA	21	Low	Well pad spill. Used oil spill.
LA	26	Medium	Well pad spill off-site.
LA	29	Low	Well pad and flowline spills.
LA	32	Low	Well pad spill.
LA	33	Low	Well pad spill.
LA	34	Low	Well pad spill.
LA	35	Low	Well pad spill.
PH	2	Medium	Well pad spill off-site.
PH	5	Medium	Well pad spill off-site.
AT	1	Low	Flowline and pump spill.
AT	2	Medium	Pump spill off-site.
AT	3	Low	Well pad spill.
GU	1	High	Pit discharge to stream. Used oil spill.
GU	3	High	Pit discharge to stream.
GU	5	High	Pump spill. Pit seepage to stream. Used oil and fuel spill.
GU	8	Medium	Pad and flowline spills off-site.
AG	AG3	High	Well pad spill. Pit seepage. Used oil spill.
AG	AG6	High	Pit discharge to stream.
AG	AG8	High	Pit seepage.
AG	AG9	High	Well pad and flowline spills. Pit seepage.
AG	AG10	Medium	Well pad spills. Possible pit seepage.
SSF	B57	High	Well pad spills. Pit seepage.
SSF	B59	High	Well pad spills. Pit seepage. Chemical spill.
SSF	61	High	Well pad spills. Pit seepage.
SSF	B63	High	Well pad spills. Pit seepage. Used oil spill.
SSF	B64	High	Well pad spill. Pit discharge to stream.
SSF	A65	Low	Well pad spill.
SSF	B66	High	Well pad spill. Pit discharge to stream.
SSF	A67	Medium	Well pad spill. Pit present.
SSF	68	High	Well pad spill. Pit discharge to stream.
SSF	69	Low	Well pad and flowline spills.
SSF	71	Medium	Flowline spill. Pit present.
SSF	WIW2	-	No spills noted.
SSF	WIW4	-	No spills noted.
SSF	WIW7		No spills noted.
			CONFIDENTIAL PET 040774

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table 6 - 5

Environmental Impact Rating for Contamination at Well Sites

SSF SSF	A1 A7 A9 A10 A13 B15 B16 A20 A22B A24 A26 A30 B31 A33 A34 B36 A38 A43	High High Low Low High High Medium Medium High Low High Medium Medium Medium High High	 Well pad spills. Pit seepage. Well pad spills. Pit seepage. Well pad spill. Well pad spill. Well pad, flowline and pump spills. Pit discharge to stream. Well pad spill. Pit discharge to stream. Pit discharge to stream. Well pad spill. Pit present. Used oil spill. Well pad and flowline spills. Pit present. Chemical spill. Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit discharge to stream. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit discharge to stream. Well pad spill. Pit present. Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted. Well pad spill off-site. Pit present. Used oil spill.
SSF SSF	A7 A9 A10 A13 B15 B16 A20 A22B A24 A26 A30 B31 A33 A34 B36 A38	High Low Low High High Medium Medium High Low High Medium Medium	 Well pad spills. Pit seepage. Well pad spill. Well pad spill. Well pad, flowline and pump spills. Pit discharge to stream. Well pad spill. Pit discharge to stream. Pit discharge to stream. Well pad spill. Pit present. Used oil spill. Well pad and flowline spills. Pit present. Chemical spill. Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted.
SSF SSF	A9 A10 A13 B15 B16 A20 A22B A24 A26 A30 B31 A33 A34 B36	Low Low High High Medium Medium High Low High Medium Medium	 Well pad spill. Well pad, flowline and pump spills. Pit discharge to stream. Well pad, flowline and pump spills. Pit discharge to stream. Well pad spill. Pit discharge to stream. Well pad apd flowline spills. Pit present. Chemical spill. Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted.
SSF SSF	A13 B15 B16 A20 A22B A24 A26 A30 B31 A33 A34 B36 A38	High High High Medium High Low High Medium Medium	 Well pad spill. Well pad, flowline and pump spills. Pit discharge to stream. Well pad spill. Pit discharge to stream. Pit discharge to stream. Well pad spill. Pit present. Used oil spill. Well pad and flowline spills. Pit present. Chemical spill. Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted.
SSF SSF SSF SSF SSF SSF SSF SSF SSF SSF	B15 B16 A20 A22B A24 A26 A30 B31 A33 A34 B36 A38	High High Medium High Low High Medium Medium - High	 Well pad, flowline and pump spills. Pit discharge to stream. Well pad spill. Pit discharge to stream. Pit discharge to stream. Well pad spill. Pit present. Used oil spill. Well pad and flowline spills. Pit present. Chemical spill. Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit discharge to stream. Well pad spill. Pit discharge to stream. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit discharge to stream. Well pad spill. Pit present.
SSF SSF SSF SSF SSF SSF SSF SSF SSF SSF	B16 A20 A22B A24 A26 A30 B31 A33 A34 B36 A38	High Medium Medium High Low High Medium Medium - High	 Well pad spill. Pit discharge to stream. Pit discharge to stream. Well pad spill. Pit present. Used oil spill. Well pad and flowline spills. Pit present. Chemical spill. Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit present. Pit present. No spills noted.
SSF SSF SSF SSF SSF SSF SSF SSF SSF	A20 A22B A24 A26 A30 B31 A33 A34 B36 A38	Medium High Low High Medium Medium - High	Well pad spill. Pit present. Used oil spill. Well pad and flowline spills. Pit present. Chemical spill. Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted.
SSF A SSF A SSF A SSF A SSF A SSF A SSF A SSF A SSF A	A22B A24 A26 A30 B31 A33 A34 B36 A38	Medium High Low High Medium Medium - High	Well pad and flowline spills. Pit present. Chemical spill. Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted.
SSF SSF SSF SSF SSF SSF SSF SSF	A24 A26 A30 B31 A33 A34 B36 A38	High Low High Medium Medium - High	Well pad and flowline spills. Pit seepage. Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted.
SSF SSF SSF SSF SSF SSF SSF	A26 A30 B31 A33 A34 B36 A38	Low High Medium Medium - High	Well pad spill. Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted.
SSF SSF SSF SSF SSF SSF	A30 B31 A33 A34 B36 A38	High Medium Medium - High	Pit discharge to stream. Well pad spill. Pit present. Pit present. No spills noted.
SSF SSF SSF SSF SSF	B31 A33 A34 B36 A38	Medium Medium - High	Well pa d spill. Pit present. Pit present. No spills noted.
SSF SSF SSF SSF SSF	A33 A34 B36 A38	Medium - High	Pit present. No spills noted.
SSF SSF SSF SSF	A34 B36 A38	– High	No spills noted.
SSF SSF SSF	B36 A38		•
SSF /	A38		Well had shill off-site Dit present lised all shift
SSF		i Minh I	
	A43		Well pad spill. Pit discharge to stream.
SSF		High	Well pad spill. Pit seepage.
	6B	High	Well pad and flowline spills. Pit seepage.
	A45	Medium	Flowline and pump spills off-site.
	A45B	Medium	Well pad and flowline spills. Pit present.
SSF	46	Medium	Well pad spill off-site. Used oil spill. Fuel spill off-site.
	B49	High	Well pad spill. Pit seepage.
	A50		No spills noted.
	B51	Medium	Well pad spill. Pit present.
	B52	Medium	Well pad spill. Flowline spill off-site.
	B55	High	Pit seepage.
	WIW1	Low	Well pad spill.
	WIW2	Medium	Pit present.
	WIW3	Medium	No spills noted.
	WIW4		Pit present.
	WIW5	High	Pit seepage. Bit propagt
SA V SA	WIW6	Medium	Pit present. Well pad spill off-site. Used oil spill off-site.
	1 2	Medium	No spiils noted.
SA SA	8		Well pad and flowline spills. Pit seepage.
SA SA	9	High	Weil pad and nowine spins. Fit seepage. Weil pad spiils.
SA	11	Low	Well pad spill off-site. Pit present.
SA			Well pad spill. Pit seepage.
SA	12 13	High	Well pad spills.
SA	16	Low	Well pad spill. Pit seepage.
SA	18	High	Well pad and flowline spills. Pit seepage.
		High	Well pad spill. Pit discharge to stream.
SA SA	19	High	Well pad spill. Pit discharge to stream. Well pad spill. Pit discharge to stream.
SA	20	High	Well pad spill. Fit discharge to stream. Well pad and flowline spills. Pit present.
SA	21	Medium	Well pad spill off-site. Pit seepage.
SA	25	High	
SA	27	Medium	Well pad spill off-site. CONFIDENTIAL PET 040775

CA1069522

\$

Table 6 – 5Environmental Impact Rating for Contamination at Well Sites

Asse	essed Site	Rating (a)	Comments
SA	28	Medium	Well pad spill. Flowline spill off-site.
SA	32	Medium	Well pad spill. Pit present.
SA	33	High	Well pad spill. Pit discharge to stream.
SA	34	Medium	Well pad spill. Flowline spill off-site.
SA	35	Low	Well pad spills.
SA	36	Medium	Pit present. Used oil, chemical and fuel spills.
SA	43	High	Well pad spill. Pit seepage.
SA	44	Medium	Pit present.
SA	46	Medium	Well pad spill. Flowline spill off-site. Pit present.
SA	54	Medium	Well pad spill. Pit present.
SA	55	Medium	Well pad spill off-site. Pit present.
SA	56	_	No spills noted.
SA	58	High	Well pad spill off-site. Pit seepage.
SA	59	High	Well pad and flowline spills. Pit seepage.
SA	60	High	Well pad spill. Pit discharge to stream.
SA	72	Medium	Well pad spill. Pit present.
SA	73	Low	Well pad spills.
SA	74	High	Well pad spill. Pit seepage.
SA	75	Medium	Well pad spill. Pit present.
SA	77	Medium	Well pad spill. Pit present.
SA	78	High	Well pad and flowline spills off-site. Pit discharge to stream.
SA	81	Medium	Well pad spill. Pit present.
SA	84	Low	Well pad and flowline spills.
SA	85	Medium	Well pad spill. Pit present.
SA	86	Medium	Well pad spill off-site. Pit present.
SA	91	Medium	Pit present.
SA	93	High	Well pad and flowline spills. Pit seepage.
SA	94	Medium	Well pad spill. Pit present.
SA	95	High	Well pad spill. Pit seepage.
SA	97	High	Well pad spill. Flowline spill off-site. Pit discharge to stream.
SA	100	High	Well pad spill. Pit seepage.
SA	103	High	Well pad spill. Pit discharge to stream.
SA	104	Medium	Well pad spill. Pit present.
SA	107	High	Well pad spill. Pit seepage.
SA	109	High	Well pad spill. Pit seepage.
SA	110	Low	Well pad spill.
SA	111	Medium	Well pad spill. Pit present.
SA	113	Medium	Well pad spill. Pit present.
CU	2	High	Well pad spill. Pit discharge to stream. Used oil spill.
YB	2	High	Pit discharge to stream.
YU	4	High	Well pad spill. Flowline spill off-site. Pit discharge to stream.
YU	6		No spills noted.
YU	5	Medium	Well pad spill. Tank spill. Pit present. Used oil spill off-site.
YU	12	High	Well pad spill. Flowline spill off-site. Pit seepage. Chemical spill
YUS	1	Low	Well pad spill. Chemical spill.
AU	1	High	Well pad spill. Pit seepage.
AU	4	High	Well pad spill. Pit seepage. Used oil and fuel spills off-site.

CONFIDENTIAL PET 040776 CA1069523

<

Table 6 – 5Environmental Impact Rating for Contamination at Well Sites

Assessed Site	Rating (a)	Comments
AU 6 AU 7 AU 9 AU 11 AU 12 AU 15 AU 16 AU 17 AU 18 AU 19B AU 21 AU 24 AUS 1 RM 1 CN 1 CN 3 CN 8 CN 11 CN 11	High Medium Medium High High High High Low High High High High High High	Well pad spill off-site. Tank spill. Pit seepage. Used oil sp Well pad spill off-site. Flowine spill off-site. Well pad and flowline spill. Pit discharge to stream. Well pad and flowline spill. Pit seepage. Well pad and flowline spill. Pit seepage. Chemical spill. Well pad and flowline spill. Pit discharge to stream. Well pad and flowline spill. Pit discharge to stream. Well pad and flowline spill. Pit seepage. Well pad and flowline spill. See production station ratings. Well pad spill. Pit present. Well pad spill. Pit seepage. Pit seepage. No spills noted. No spills noted.
CN 12 DU 1	Low Hedium High	Well pad spill. Pit present. See production station ratings. 51 Well sites 29 Well sites 66 Well sites
a)	Low	16 Well sites Environmental damage that can be naturally corrected or cleaned up on the scale of hours to days. Spills, regardless of size, are confined to the site. No oil containing pit is present.
	Medium	Environmental damage that even after mitigative action will take days to weeks to regain pre-event conditions. Spills, regardless of size, have migrated off-site. Pit contain oil is present. Contaminant appears confined within the pit.
	High	Environmental damage that may require extensive mitigative action or may be of long term duration before recovery. Pit containing oil is present. Contaminants appear to have migrated out of the pit.

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069524

CONFIDENTIAL PET 040777

Table 6 – 6
Environmental Impact Rating for Contamination at Production Stations

Station	Spill Source	Rating (a)	Comments
Lago Agrio	Separator	Low	
Central	Wash Tank	Low	Theor coils at apparative molt
Central	Surge Tank	Low	These spills are generally small
	Chemical Tank	Low	and confined to the adjacent area.
	Fuel Tank (Diesel)	Low	
	Fuel Tank (Gas)		
	, ,	Low	
	Fuel Tank (Jet) Pump/Compressor	Low	
		Low	
	Lined Sump	Low	• ··· · · · · · · ·
	Vehicle Maintenance	Medium	Spills drain to a low off-site area.
	Flare Stack	Low	Confined to area below stacks.
	Waste Pit	High	Overflow collects in low off-site area.
	Separation Pits	High	Widespread contamination of land below discharge.
Lago Agrio	Separator	Low	
North	Surge Tank	Low	These spills are generally small
	Wash Tank	Low	and confined to the adjacent area.
	Pump/Compressor	Low	
	Flare Stack	Low	
	Separation Pits	High	Contamination of channel below discharge.
Parahuacu	Well Site	Medium	Large barren area with no vegetation growth.
	Surge Tank	Low	
	Separator	Low	Spills are small or confined.
	Pump/Compressor	Low	
	Flare Line	High	Spill enters wetland adjacent flare line.
	Flare Stack	Low	Spills enter separation pit.
	Separation Pits	High	Widespread contamination of land below discharge.
Atacapi	Separator	Low	Spill confined to adjacent area.
·	Separation Pits	High	Widespread contamination of land below discharge.
Guanta	Wash Tank	Medium	Spills ultimately merge at pit discharge area.
	Fuel Tank (Diesel)	Low	Spill confined to adjacent area.
	Pump/Compressor	Medium	Spill merges with pit discharge spill.
	Flare Line	Medium	Spill merges with pit discharge spill.
	Flare Stack	Low	Spill confined to adjacent area.
	Separation Pits	High	Widespread contamination of land below discharge
Aguarico	Separator	Low	Spill appear confined to adjacent area.
J +	Wash Tank	Medium	Spills have entered off-site wetland via drain pipes.
	Surge Tank	Low	Spill appear confined to adjacent area.
	Lined Sump	Medium	Spills have entered off-site wetland.
	Fiare Stack N.	Low	Spill appears confined to adjacent area.
	Flare Stack S.	Medium	Pit below flare is destroyed. Spills spread out.
	Pit	Medium	Pit is breached or destroyed. Spills spread out.
	Separator	Medium	Waste discharge via ditch to off-site area.
Shushunodi	•		Drain system discharges off-site near runway.
	Vohici o Lisintegadoo	1 HIMO 1	
Shushufindi Central	Vehicle Maintenance Wash Tank	High	
	Vehicle Maintenance Wash Tank Surge Tank		Drainage ditch adjacent berm contains oil. Drainage ditch adjacent berm contains oil.

. .

CA1069525

CONFIDENTIAL PET 040778

CA1069525

Table 6 – 6

Environmental Impact Rating for Contamination at Production Stations

Station	Spill Source	Rating (a)	Comments
	Fuel Tank (Diesel)	High	Groundwater appears contaminated.
	Fuel Tank (Diesel)	High	Groundwater appears contaminated.
	Fuel Tank (Jet)	High	Groundwater appears contaminated
	Pump/Compressor	High	Waste discharge has flowed off-site.
	Flare Stack	Low	Spills appear sufficial
	Separation Pits	Medium	Discharge of produced water to bog and stream.
hushufindi	Wash Tank	Medium	These spills have entered a ditch which
lorth	Surge Tank	Medium	drains off - site. Spills around the equipment
	Chemical Tank	Medium	appear small.
	Pump/Compressor	Medium	
	Gas Vent	High	Oily waste has migrated downshipe and entered river.
	Flare Stack	Medium	Surficial spills in area below stacks.
	Separation Pits	High	Discharge and overflows into wetland and river.
hushufindi	Pipeline	Low	These spills appear confined to the
South	Separator	Low	immediate area.
	Wash Tank	Low	
	Surge Tank	Low	
	Pump/Compressor	High	Spills have entered river via a ditch.
	Lined Sump	High	Ditch drains to river.
	Flare Stack	Low	Small surficial spills under stacks.
	Separation Pits	High	Contamination appears confined to the channel.
hushufindi	Separator	Low	Surficial spills.
outhwest	Wash Tank	Medium	Oil on surface and in ditch inside bermed area.
	Chemical Tank	Medium	Soil has solvent odour adjacent tanks.
	Fuel Tank (Diesel)	Low	The spill has migrated out of the bermed area.
	Pump/Compressor	Low	Surficial stains around equipment.
	Lined Sump	Medium	Sumps are located on - site but drain to off - site ditch
	Flare Stack	Low	Horizontal flares knockoutto separation pit.
	Off-Site Waste Pit	High	Severe contamination inside off-site pit.
	Separation Pits	High	Contamination appears confined extensive channel.
Shushufindi Vater Inj.	Pump/Compressor	High	Extensive damage to stream.
Sacha	Vehicle Maintenance	Low	Wastes confined to adjacent area.
entral	Separator	Low	Surficial spills around equipment.
	Wash Tanks (2)	Medium	Spill entered adjacent drainage ditch.
	Surge Tank	High	Oily waste is discharged via ditch to plantation area.
	Chemical Storage	High	Numerous spills inside large compound.
	Fuel Tank (Diesel)	Low	Fuel spills inside and outside the bermed area.
	Fuel Tank (Diesel)	Medium	Spills enter ditch adjacent plantation via drain.
	Pump/Compressor	Low	Spills confined to adjacent areas.
	Flare Stack	Low	Spills confined to adjacent areas.
	Separation Pits	High	Widespread contamination at discharge.
iacha	Separator	Low	
ionth # 1	Wash Tank	Low	Spills appear confined to adjacent areas.
	Fuel Tank (Diesel)	Low	CONFIDENTIAL PET 040779
	Flare Stack	Low	TONE LULY 779

. .. ------

Table 6 – 6 Environmental Impact Rating for Contamination at Production Stations

Station	Spill Source	Rating (a)	Comments
_	Separation Pits	Medium	Oily soil and water below discharge pipe.
Sacha	Separator	Low	
North # 2	Wash Tank	Low	
	Surge Tank	Low	Spills appear confined to adjacent areas.
	Pump/Compressor	Low	-F
	Flare Stack	LOW	
	Separation Pits	High	Discharge of waste to stream.
Sacha	Separator	Low	Surficial spills around equipment.
South	Wash Tank	High	Oil on shallow groundwater within bermed area.
	Surge Tank	High	Oil on shallow groundwater within bermed area.
	Pump/Compressor	Low	Surficial spills around equipment.
	Flare Stack	Low	Surficial spills under each of five stacks.
	Separation Pits	High	Oily sediment and water below discharge pipe.
Culebra	Pipeline	Low	
	Wash Tank	LOW	
	Fuel Tank (Diesel)	Low	Spills appear confined to adjacent areas.
	Pump/Compressor	Low	
	Former Pit	Low	
Yulebra	Wash Tank	Low	Spills appear confined to adjacent areas.
	Fuel Tank (Diesel)	Low	
	Pump/Compressor	Medium	Spills have flowed via ditch to off-site wetland.
	Lined Sump	Low	Spills appear confined to adjacent areas.
	Flare Stack	Low	
	Pit	High	Spills have flowed via ditch to off-site wetland.
Yuca	Separator	Low	
	Wash Tank	Low	
	Surge Tank	Low	
	Chemical Tank	Low	Spills appear confined to adjacent areas.
	Fuel Tank (Diesel)	Low	
	Fuel Tank (Jet)	Low	
	Pump/Compressor	Low	- · · · · · · · · · · · · · · · · · · ·
	Lined Sump	Medium	Overflow has flowed downslope and off-site.
	Flare Stack	Low	Spills below stack.
	Separation Pits	High	Discharged fluid appears confined to narrow channel
Auca	Vehicle Maintenance	Medium	Waste fluids enter ditch and flow off-site.
Central	Separator	Low	_
	Fuel Tank (Diesel)	Low	Spills appear confined to adjacent areas.
	Pump/Compressor	Low	
	Generator	Low	
	Sumps	Medium	Sumps appear to drain to off-site.
	Flare Stack	Low	Spills below each of three stacks.
	Separation Pits	High	Waste is discharged to off-site stream.

CONFIDENTIAL PET 040780

CA1069527

 Table 6 – 6

 Environmental Impact Rating for Contamination at Production Stations

Station	Spill Source	Rating (a) Comments				
Auca South	Pipeline Separator Wash Tank Pump/Compressor Generator Flare Stack Separation Pits	Low Medium Medium Medium Low Low	Spill below flowlines entering the station. Overflow has spilled down slope and moved off-site. Pooled oily water in off-site wetland. Spill has flowed downslope and off-site. Spills confined to adjacent area. Oil in stream below discharge pipe.			
Auca Sur	Fuel Tank (Diesel) Pump/Compressor Generator Pit	Medium Medium Medium High	Spill has entered low area. Spill has entered low area. Spill has entered low area. Pit fluids disposed to off—site area.			
Cononaco	Lined Sump Flare Stack Separation Pit	Medium Low High	Off-site drainage ditch contains pooled oil. Spills at base of two stacks appear surficial. Discharge to off-site channel. Oil in soil and water.			
Dureno	Surge Tank Lined Sump Flare Stack Separation Pit	Low Low Low High	Spills appear small. Discharge is downslope to jungle and stream.			
(a)		Low	Environmental damage that canbe naturally corrected or cleaned up on the scale of hours to days. Spills, regardless of size, are confined to the site. Spills appear to be sufficial.			
		Medium	Environmental damage that even after mitigative action will take days to weeks to regain pre-event conditions. Spiils, regardless of size, have migrated off-site.			
		High	Environmental damage that may require extensive mitigative action or may be of long term duration before recovery. Pit containing oil is present. Contaminants appear to have migrated out of the pit. Spills appear to impact groundwater.			

CONFIDENTIAL PET 040781

7.1 INTRODUCTION

The effluent and surface waters associated with PETROECUADOR-TEXACO oil field in the Oriente region were characterized and assessed as part of the overall environmental audit. The assessment was based on field data collected in June 1993.

The principal objectives were to characterize and assess the effluents and surface waters and to provide an environmental baseline to which future water quality changes can be compared. More specifically, the objectives were as follows:

- 1. characterize the effluents (produced water and sanitary) associated with the petroleum activities;
- 2. characterize the rivers receiving the effluents;
- 3. assess the quality of the effluents and rivers according to their respective water quality criteria; and
- 4. provide a comparative analysis of river water quality upstream and downstream of effluent discharge points, and between reaches in a stream and among streams as they pertain to influences from the petroleum operations, other anthropogenic activities and/or natural processes.

7.2 METHODOLOGY

The surface water field sampling program was conducted during June 8 - 16, 1993. A total of 39 effluent and stream samples were collected which represented 10 oilfields in the concession area. The oilfields included in the study were Shushufindi, Agua Rico, Sacha, Yuca, Cononaco, Auca, Lago Agrio, Atacapi, Parahuacu, and Guanta. Sampling at Culebra, Yulebra and Auca Sur was not conducted because they have no direct releases to the environment.

Of the total (39) samples collected, 17 were produced water effluents and one was a sanitary effluent. The effluents were sampled from outlet pipes or from outlets draining final treatment ponds. In the both cases, the samples reflect the final effluent entering the receiving streams or land.

CONFIDENTIAL PET 040782

PART-7.VI

7-1

A G R A Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

A total of 21 samples were collected from streams and rivers. Streams receiving an effluent, were sampled upstream and downstream from the discharge point where access to the stream was available. The distances from the effluent discharge point varied widely and was determined by access to the stream. Some other rivers, which did not receive effluent were sampled for comparative analysis and because of their regional importance.

At sampling sites downstream of the effluent discharge points, the samples were collected from the mixing zone, a zone before the concentration of the effluent becomes homogenous across the width of the river channel. Because most of the streams receiving effluent were generally <10 m wide, it was assumed that the effluent mixed rapidly and that its concentration became homogeneous within 5 km downstream of the discharge point.

Water samples were obtained from a depth of about 20 cm below surface in order to avoid surface debris. The water samples were preserved (as required), kept cool and dark until their transport to the laboratory in Edmonton, Alberta.

The water quality of the effluents and rivers were assessed using parameters and their respective criteria established by the Environmental Audit Technical Committee. The water quality assessment was based solely on field data obtained during the June sampling because no historical data were found.

7.3 REGIONAL CHARACTERISTICS OF STREAMS AND WATER USERS

The study area is located at the base of the Andes Mountains in the Northern Oriente region of Ecuador. The region, comprised mainly of jungle, is located about 300 m above sea level within the upper Amazon drainage basin and annually receives between 2000 and 4000 mm of rainfall.

The rivers generally flow from west to east. The size of rivers in the study area range widely. Rio Napo and Rio Agua Rico are the largest rivers. Rio Eno, Rio Tiputini and Rio Shiripuro are about 30 m wide. Most of the other rivers sampled were <10 m wide. These rivers provide a wide range of domestic and industrial uses, they include: habitat for terrestrial and aquatic wildlife, drinking, stock watering, fishing, bathing, washing (clothing and automobiles, etc.), receiving of effluents from petroleum operations and abatoirs, water withdrawals for industry and transportation.

7.4 EFFLUENTS AND RIVERS IN THE SHUSHUFINDI FIELD

7.4.1 Effluents

The quality of the effluents originating from the South, North and Southwest (sites E2, E11, and E12) production facilities in the Shushufindi field are generally similar (Figure 6-1 and Tables 7-1 and 7-2). The produced waters have a near neutral (field) pH, warm temperatures

PART-7.V1

7-2

CA1069530

CONFIDENTIAL PET 040783

TABLE 7-1

Summary of Effluent Sample Sources and Receiving River/Land in the PETROECUADOR-TEXACO Oriente Oil Fields.

Receiving River or Land

Oilfield/Production Station

Shusufindi Cental	Rio Shushufindi, 500 m downstream of discharge point	forest/Rio Shushufindi
Shushufindi North	from final pond	small stream
Shushufindi South	from drainage ditch about 50 m from discharge point into Rio Niutshinac	Rio Niutshinac
Shushufindi Southwest	from outlet of the third pond	wetland/forest
Agua Rico Central	outlet pipe	forest
Sacha North-2	outlet pipe	cultivated field/Rio Jivino Rojo
Sacha North	outlet pipe	Rio Plandayacu
Sacha Central	drainage ditch	drainage ditch/Rio Quincha Ya Cu/Rio Blanco
Sacha Central	drainage ditch - sewage effluent	forest/Rio Quincha Ya Cu/Rio Blanco
Sacha South	outlet pipe	forest/Rio Huamayacu
Yuca Central	outlet pipe	plantations/Laguna Taracoa
Cononaco Central	final pond - outlet	forest/Rio Shiripuro
Auca Central	outlet pipe	No Name River(a)
Auca South	final pond - outlet	No Name River(b)/Rio Tiputini
Lago Agrio Central	from drainage ditch located about 5 m from discharge pipe	Rio Teteye
Lago Agrio North	outlet pipe	No Name River(c)/Rio Teteye
Atacapi Central	final pond - outlet	wetland/forest
Parahuacu Central	outlet pipe	wetland/forest
Guanta Central	final pond - outlet	wetland forest

CA1069531

CA1069531

CONFIDENTIAL PET 040784

PART-7.VI

TABLE 7-2

Summary of Effluent Quality Data for the PETROECUADOR-TEXACO **Oriente Oil Fields**, June 1993

	Water				Arua Rico	Sacha				
Site Parameter	Quality Criteria	South E2	North E11	South/West E12	Central E9	North #2 E13	North E15	Central E19	Sewage E20	South E21
Temperature (°C)		30.0	38.0	36.0	33.0	34.0	40.0	34.0	26.0	39.0
pH-field (units)	5.5-9.5	7.16	7.36	7.28	6.89	7.6	7.4	7.5	6.8	7.1
pH (units)	5.5-9.5	6.53	6.3	6.1	6.70	6.55	6.35	6.45	6.23	3.22
Specific Conductance-field (mS/cm)		> 50.0	39.0	> 50.0	> 50.0	7.0	10.0	14.0	0.80	7.5
Specific Conductance (mS/cm)		57.2	30.3	65.3	67.3	6.2	8.4	14.2	0.5	6.2
Colour (truce)		17	50	11	20	2	2	9	<1	21
Chloride, Diss.	2500	20000	11200	28200	32600	1580	2400	4540	113	1630
Hardness, T. as (CaC0 ₃)		5241	6523	3580	7961	866	606	95 0	79	478
Total Suspended Solids (TSS)	40	2150	540	1100	365	442	120	320	164	324
Total Dissolved Solids (.45 µm) (TDS)	5000	39100	20200	49700	55400	3130	4540	8180	356	3240
TPH (C5-C30)	25	3.6	5.4	4.1	7.5	1.0	4.7	1.9	<0.2	8.7
Sulphide	1.0	8.1	3.2	2.9	3.6	1.5	2.6	0.7	0.3	2.0
Phosphorus, T. as P	2	0.16	0.35	0.19	0.1	0.02	0.21	0.25	0.11	0,80

Water Quality Criteria for effluent taken from the criteria, all values are reported in mg/L unless otherwise stated; T - Total; TPH - Total Petroleum Hydrocarbons; Notes: P - Phosphorus; Diss. - Dissolved; E - Effluent

7-4

PART-7.VI

TABLE 7-2 (CONCLUDED)

	Water	Yuca	Cononaco			Lag	a Agrio	Atacapi	Parahuacu	Guanta	
Sile Parameter	Quality Criteria	Central E22	Central E23	Central E25	South E27	Central E31	North E34	Central E37	Central E38	Central 39	
Temperature (°C)		32.0	48.0	43.0	39.0	26.0	33.0	33.0	35.0	32	
pH-field (units)	5.5-9.5	6.7	8.1	7.3	7.4	7.1	7.3	0.74	6.4	6.3	
pH (units)	5.5-9.5	6.61	7.2	6.52	7.13	7.07	6.50	5.5	4.8	4.44	
Specific Conductance-field (mS/cm)		>50.0	4.0	13.0	46.0	1.75	18.5	> 50.0	19.5	> 50.0	
Specific Conductance (mS/cm)		75.1	2.8	10. 9	37.8	1.6	16	160	16.5	103	
Colour (truce)		9	4	<1	17	11	30	32	24	23	
Chloride, Diss.	2500	30400	670	3270	13700	418	5130	88000	6020	48900	
Hardness, T. as (CaCO ₃)		6645	115	481	2477	237	2170	32830	2386	17492	
Total Suspended Solids (TSS)	40	808	124	310	756	168	1270	11000	818	4470	
Total Dissolved Solids (.45 µm) (TDS)	5000	52700	1510	5790	24100	1020	10200	147000	10300	82400	
ТРН (С5-С30)	25	2.2	3.6	5.9	2.6	0.5	21	1.0	4.1	3.0	
Sulphido	1.0	7.8	1.4	4.5	5.3	1.3	1.7	10.2	5.9	7.0	
Phosphorus, T. as P	2.0	0.59	0.53	0.12	0.50	0.50	0.84	0.74	0.15	0.16	

Notes: Water Quality Criteria for effluent taken from the criteria, all values are reported in mg/L unless otherwise stated; T - Total; TPH - Total Petroleum Hydrocarbons; P - Phosphorus; Diss. - Dissolved; E - Effluent

7-5

CONF T 040786

CA1069533

PART-7.VI

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

-

and are characteristically high in concentrations of total suspended solids (TSS), total dissolved solids (TDS), and sulphide.

The TDS concentrations, as high as 49700 mg/L (site E12), are between four and ten times higher than the water quality criteria of 5000 mg/L. The chloride concentrations, a major contributor to the high TDS levels, exceed its criteria by an equal amount. The high concentrations of TDS are also reflected in the high levels of specific conductance and total hardness (sum of calcium and magnesium ions). Water with TDS levels ranging from 10,000 to 100,000 mg/L and a total hardness of >180 mg/L are considered saline and very hard (McNeely et al. 1979). Concentrations of TSS and sulphate also exceed their respective water quality criteria while levels of phosphorous are within the limit. The effluent had an odour similar to that of hydrogen sulphide.

7.4.2 Rio Niutshinac, Rio Shushufindi, and Rio Eno

Rio Niutshinac, Rio Shushufindi and Rio Eno are the main rivers directly or potentially associated with the South, North and Southwest production facilities in the Shushufindi field (Figure 6-1 and Table 7-3). The three rivers are important to aquatic life, are extensively used for domestic purposes and some receive effluents directly from the petroleum operations (Photo 7-1). The following describe the most important changes in the water quality of the rivers resulting from the effluent discharge.

7.4.2.1 <u>Rio Niutshinac</u>

Rio Niutshinac receives effluent (produced water) from the Shushufindi Southwest production facility. The effluent flows along an oil stained drainage ditch before it enters the river at site E2 (Photo 7-2). Although the river water quality at upstream (site R1U) and downstream sites (R3D and R4D) is generally similar in terms of temperature, near neutral pH, low turbidity levels and colour, other parameters reveal some important differences. Concentrations of TSS, TDS and total petroleum hydrocarbons (TPH) are higher at site R3d by about 65, 4 and 3 times, respectively, than those recorded at the background site (R1U) located about 500 m upstream of the effluent discharge site. These differences are likely the result of input at site E2 since these parameters are found in high concentrations in the effluent.

The ionic characteristics of the Rio Niutshinac have also changed, from a calcium bicarbonate type of water at site R1U to a sodium chloride type of water at sites R3d and R4d. The ionic dominance was altered from: cations $Ca^{++} > Mg^{++} > Na^+ > K^+$; anions $HCO_3 > SO_4^{-} > Cl^-$ at the background site to: cations $Na^+ > Ca^{++} > Mg^{++} > K^+$; anions $Cl^- > HCO_3 > SO_4^{-} >$ at the two downstream sites. The total hardness of the water changed from soft to a moderately soft state downstream of the effluent discharge. Waters with a total hardness of 91 to 120 mg/L are considered moderately soft (McNeely et al. 1979). Total alkalinity levels are within a moderate range. Waters with a total alkalinity concentration of <24 mg/L are susceptible to

PART-7.VI

CONFIDENTIAL PET 040787

Summary of Water Quality Data for Rivers in the PETROECUADOR-TEXACO Orient Oilfields - June 1993

Sta Paramitar	Water Quali		Shuahafiadi						Agua Rice Sacha			
	Drinking	Aquatic Life	RIŲ	RJA	R44	RSU	R6d	R7d .	RSU	RIOd	R144	R16d
Temperature (°C)			24.0	23.0	24.0	25.0	25.0	24.0	24.0	22.0	23.0	23.5
pH-field (units)	6.0-9.0	4.0-9.0	6.55	6.04	7.30	5.86	5.93	6.22	6.53	7.04	7.31	7.19
pH (units)	6.0-9.0	4.0-9.0	7.61	7.01	7.10	7.16	7.07	7.16	7.27	7.63	7.18	7.22
Specific Conductance-field (mS/cm)			0.23	0.85	0.70	0.20	0.23	0.29	0.30	0.16	0.26	0.29
Specific Conductance (mS/cm)			0.11	0.64	0.65	0.08	0.07	0.08	0.09	0.11	0.096	0.15
Dissolved Oxygen (field)		> 5.0					See	Notes				
Turbidity NTU	100		11	6.4	16	2.1	8	39	21	100	19	9.3
Colour (Irus)	20		16	5	12	20	17	21	19	7	13	19
Calcium, Diss.	75	75	8	17	20	5.2	4.8	5.2	5.4	13	5.0	8.3
Magnesium, Diss.	50	50	3.9	6.2	7.3	2.5	2.3	2.5	2.7	1.2	2.5	2.9
Potassium, Diss.			1.4	3.9	3.9	1.3	1.3	1.5	1.6	1.3	1.9	2.4
Sodium, Diss.			5	82	80	4	3	2	4	2	3	8
Iroa, T.	0.3	0.3	1	1.3	1.4	I	1.2	1.4	1.4	1.2	0.1	0.1
Manganese, Diss	0.5	0.1	< 0.05	< 0.05	< 0.05	<0.05	,0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05
Bicarbonate, Diss.	100		57	63	62	43	37	39	45	48	37	50
Carbonate, Diss.	50		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloride, Diss.	250	1000	0.8	150	155	0.7	0.9	0.6	0.8	2.5	1.1	9.0
Sulphate, Diss.	500	500	1.5	0.9	3.7	0.6	0.6	1.6	1.1	5.1	0.7	0.6
Alkalinity, T. as (CaCQ)	250		47	52	50	35	30	32	37	40	30	41
Hardness, T. as (CaCQ,)	250		36	68	80	23	21	23	25	37	23	33
Total Suspended Solids (TSS)	Absent		27	65	210	105	16	60	410	260	168	276
Total Dissolved Solids (.45 µm) (TDS)	1000		92	365	368	77	80	83	73	77	84	93
ТРН (С5-С30)	1.0	1.0	0.9	2.4	1.7	2.7	3.9	3.1	3.3	2.5	0.3	0.4
Ionic Balance			0.985	0.951	0.947	0.912	0.919	0.856	0.902	0.900	0.973	0.978

CA1069535

CA1069535

CONFIDENTIAL PET 040788

PART-7.VI

Notes: Water quality criteria for surface waters taken from the contract document; all values are reported in mg/L unless otherwise stated; T - Total; TPH - Total Petroleum Hydrocarbons; P -

Dissolved oxygen concentrations in rivers and streams ranged from 4.0 to 6.0 mg/L in June 1993 (personal communication with Roy Roberts of Fugro McClelland).

Phosphorus; Diss. - Dissolved/ R - River; U - Upstream (control) aite; d - downstream of effluent discharge point.

Į.

Site Pårameter	Water Quality Criteria		Sacha 		Contract		Auta				Lago Agria			
	Drinking	Aquatic Life	RL7U	R I SU	R34U	R26d	R28U	R294	R30U	R32d	R33U	R35U	R366	
Temperature (*C)			23.5	24.0	25.0	24.5	24.0	26.5	23.5	25.0	21.0	24.0	25.0	
pH-field (units)	6.0-9 .0	4.0-9.0	7.03	6.78	7.40	6.91	6.93	7.33	7.80	7.05	7.80	6.18	5.94	
pH (unite)	6.0-9.0	4.0-9.0	7.19	7.39	7.17	6.74	6.93	7.12	6.70	7.00	7.29	7.58	7.53	
Specific Conductance-field (mS/cm)			0.27	0.32	0.20	0.68	0.14	5.80	0.13	0.20	0.15	0.17	1.25	
Specific Conductance (mS/cm)			0.11	0.16	0.05	0.62	0.04	5.04	0.02	0.12	0.10	0.09	1.23	
Dissolved Oxygen (field)		>5.0					See Notes							
Turbidity NTU	100		8.4	2.1	17	2.1	4.2	4.2	6.5	70	40	6.9	7.8	
Colour (true)	20		20	15	5	3	17	14	5	13	7	16	20	
Calcium, Dise.	75	75	6.8	9.6	3.3	9.8	2.1	64	0.8	8.7	10	6.8	56	
Magnesium, Diss.	50	50	2.8	4.5	2.0	1.9	0.8	10	0.5	3.3	1.2	3.0	5.3	
Potassium, Diss.			1.8	1.9	1.1	2.4	1.6	24	0.5	32.	1.1	1.7	18	
Sodium, Diss.			4	5	3	89	2	895	2	5	2	4	142	
Iron, T.	0.3	0.3	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Manganese, Disa	0.5	0.1	< 0.05	< 0.05	< 0.05	<0.05	,0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	
Bicarbonate, Diss.	100		47	70	29	23	17	56	10	49	38	49	116	
Carbonate, Diss.	50		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Chloride, Diss.	250	1000	1.0	0.8	0.9	154	0.5	1600	0.2	2.2	1.4	1.4	378	
Sulphate, Diss.	500	500	0.5	0.5	0.5	0.6	0.4	1.6	0.5	1.0	3.7	0.6	6.6	
Alkalinity, T. as (CaCQ,)	250		39	57	24	19	15	46	8	40	31	40	95	
Hardness, T. as (CaCQ)	250		29	43	16	32	9	201	4	35	30	29	162	
Total Suspended Solids (TSS)	Abacni		152	152	156	140	88	216	168	152	200	104	200	
Total Dissolved Solids (.45 µm) (TDS)	1000		83	100	63	360	57	2800	15	88	77	93	732	
трн (С5-С30)	1.0	1.0	0.3	<0.2	0.2	0.4	0.4	0.3	0.3	0.5	0.4	0.5	0.2	
Ionic Balance			0.976	0.945	0.954	0.967	0.991	0.945	1.005	1.134	0.964	0.940	0.999	

Notes: Water quality criteria for surface waters taken from the contract document; all values are reported in mg/L unless otherwise stated; T - Total; TPH - Total Petroleum Hydrocarbons; P - Phosphorus; Diss. - Dissolved/ R - River; U - Upstream (control) site; d - downstream of effluent discharge point.

Dissolved oxygen concentrations in rivers and streams ranged from 4.0 to 6.0 mg/L in June 1993 (personal communication with Roy Roberts of Fugro McClelland).

PART-7.VI

7-8

Photo 7-1 River Rio Niutshinac at site R3d showing typical stream morphology and water use in the study area.

Photo 7-2 Produced water from the southwest production station flowing along an oil stained drainage channel before it enters Rio Niutshinac at site E2.

PART-7.VI

7-9

CONFIDENTIAL PET 040790

alterations in pH which consequently may have a serious impact on aquatic life (CCREM 1987). Although the levels of TDS and associated constituents are within the water quality criteria, the aquatic flora and fauna tolerant of increased salinity are probably favoured and a shift in the biological community can result.

The concentration of TPH showed about a threefold increase at site R3d as compared to the background site. Concentrations at both downstream sites exceed the water quality criteria for drinking and aquatic life of 1.0 mg/L.

Concentrations of iron at sites upstream and downstream of the effluent discharge exceed the water quality criteria for drinking and aquatic life. Levels of TSS at the downstream sites exceed the criteria for drinking water.

7.4.2.2 <u>Rio Shushufindi</u>

Available data suggests that water quality of Rio Shushufindi upstream (site R5U) and downstream (site R6d) of Shushufindi Central production facility is similar and shows no significant influence from the operation of the facility. The waters at both sites have an identical temperature (25.0°C) near neutral pH, moderate turbidity and low to moderate levels of alkalinity. The concentrations of TDS and major ions indicate the water is of the calcium bicarbonate type. The ionic species according to their dominance are: cations $Ca^{++} > Mg^{++} >$ $Na^+ > K^+$; anions $HCO_3 > Cl > SO_4^-$. The water is considered very soft and because of the low alkalinity, it has a low capacity to neutralize an acid.

The concentrations of iron, TSS, and TPH exceed the water quality criteria for drinking water. The inputs of iron and TSS are probably from natural sources. The source of TPH is unknown.

7.4.2.3 <u>Rio Eno</u>

The water quality of Rio Eno upstream (site R8U) and downstream (site R7d) is similar and exhibits no influence from Shushufindi North, the nearest production facility. It should be noted that the hydraulic connection between the small creek that receives the effluent from the facility and Rio Eno could not be determined. The water quality of Rio Eno is similar to that of Rio Shushufindi. The water is of the calcium bicarbonate type, has a near neutral pH, moderately turbid, soft, low in TDS, and has a moderate to high level of TSS. The concentrations of iron, TSS and TPH exceed the water quality criteria for drinking water. The TPH levels also exceed the criteria for the protection of aquatic life. The elevated levels of these parameters probably originate from other anthropogenic sources. The laboratory test for TPH excludes naturally occurring hydrocarbons.

PART-7.VI

7-10

CONFIDENTIAL ~ PET 040791

7.5 EFFLUENT IN THE AGUA RICO FIELD

The effluent in the Agua Rico field originates from the Agua Rico Central production facility (Figure 6-1, Tables 7-1 and 7-2). The produced water at site E9 has a near neutral pH, warm temperature and is saline and very hard. The TDS concentration was higher than those recorded in the Shushufindi field. Concentrations of chloride (32600 mg/L), TSS (365 mg/L), TDS (55400 mg/L), and sulphide exceed the water quality criteria of 2500, 40, 5000 and 1.0 mg/L, respectively. The effluent from the Agua Rico field was discharged into the forest with no direct connection to a receiving stream. The effluent has had a notable effect on the forest. The vegetation adjacent to the discharge was dead or yellowed (Photo 7-3).

7.6 EFFLUENTS AND RIVERS IN THE SACHA FIELD

7.6.1 Effluents

The effluents from the Sacha field comprise produced waters from Sacha #2 North, Sacha North, Sacha Central and Sacha South and sewage effluent from Sacha Central facilities (Figure 6-1 and Tables 7-1 and 7-2). The produced waters exhibit a similar quality. They are warm, particularly at site E15 and have a near neutral pH. As compared to those in the Shushufindi field, the effluents have similar TPH levels, notably lower concentrations of TSS and sulphide and the TDS levels are about 10 times lower. In terms of fresh water, the effluents are considered fresh and very hard (McNeely et al. 1979). The concentrations of chloride and TDS at site E19 and some of the sulphide and phosphorous levels at the other sites exceed the water quality criteria.

The sewage effluent at site E20 has a near neutral pH and relative to the produced waters has low concentrations of TDS and total hardness and similar levels of suspended solids. Only the TSS level exceeded the water quality criteria.

7.6.2 Rio Jivino Rojo, Rio Plandayacu and Rio Blanco

Rio Jivino Rojo, Rio Plandayacu and Rio Blanco are the main rivers directly associated with the production facilities in the Sacha field. These rivers are important to aquatic life and for domestic uses.

7.6.2.1 <u>Rio Jivino Rojo</u>

Rio Jivino Rojo receives effluent indirectly from the Sacha North #2 facility. The effluent from site E13 flows along a ditch through a cultivated field and potentially into the river (Figure 6-1). A river sample upstream of the effluent discharge point could not be obtained. The data suggest that the river downstream of the effluent discharge point (site R14d) is unaffected (Table 7-3).

PART-7.VI

CA1069539

CONFIDENTIAL PET 040792 The water has a neutral pH, is of the calcium bicarbonate type with low levels of TDS, total hardness and alkalinity, similar to those levels at the upstream river sites in the Shushufindi field. The TPH concentration (0.3 mg/L) is low. Only the TSS level (168 mg/L) exceeded the water quality criteria for drinking.

7.6.2.2 <u>Rio Plandavacu</u>

Rio Plandayacu receives effluent from the Sacha North facility (site E15). In general, the water quality of Rio Plandayacu is similar to that of Rio Jivino Rojo. The water upstream (site R17U) and downstream (R15d) of the effluent discharge point are similar except for the slightly elevated levels of calcium, sodium and chloride found at the downstream site. Because a high concentration of these parameters is characteristic of the effluent, the higher levels found in the river are probably the result of loading from the effluent. The changes in water quality are slight. Only the level of TSS exceeded the water quality criteria for drinking.

7.6.2.3 <u>Rio Blanco</u>

Rio Blanco may receive effluents (produced water and sewage) indirectly from the Sacha Central production facility (sites E19 and E20). The effluent from site E19 flows along a drainage ditch into the forest and may eventually reach the Rio Quincha Ya Cu/Rio Blanco. The ditch immediately downstream of site E19 also contained a significant amount of oily wastes (Photo 7-4). Because a direct connection between the effluents and the river was unlikely, the sampling of the river was limited to the upstream site (R18U).

The water quality of Rio Blanco at site R18U is similar to that reported for the upstream site on Rio Plandayacu. The water has a near neutral pH, is of the calcium bicarbonate type with low levels of TDS, chloride, total hardness and alkalinity. The TPH concentration (<0.2 mg/L) is low. Only the TSS concentration (152 mg/L) exceeded the water quality criteria for drinking water. Available data provides evidence that the discharge from the production station has no apparent influence on the water quality of the river.

7.7 EFFLUENT IN THE YUCA FIELD

In the Yuca field, the effluent originates from the Yuca Central (site E22) production facility (Figure 6-1). The effluent flows along a small and poorly defined stream, through plantations, and may eventually discharge into Laguna Taracoa, a distance of about three kilometres (Table 7-1). Because the stream contains mainly produced water, the sampling was limited to the effluent discharge site.

PART-7.VI

CONFIDENTIAL PET 040793

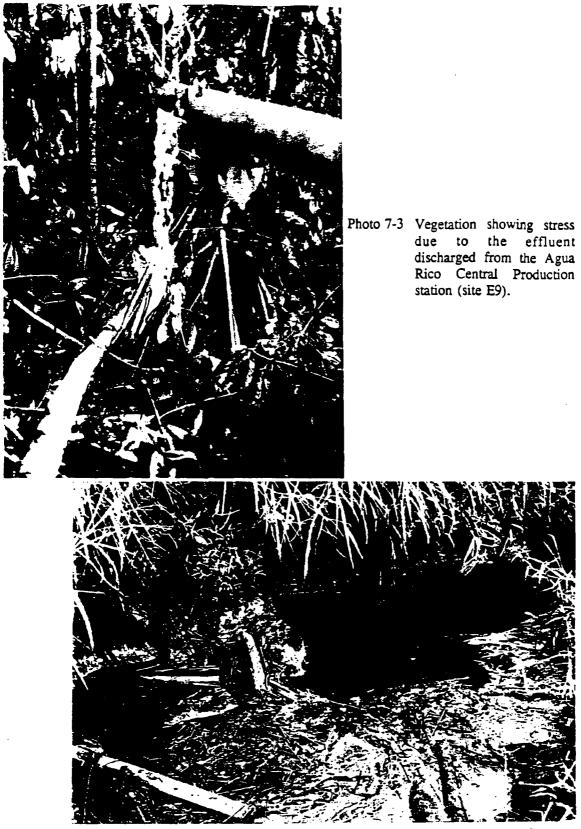


Photo 7-4 A drainage ditch containing oily wastes and produced water released from the Sacha Central production station (site E19).

CONFIDENTIAL PET 040794

PART-7.VI

1

7-13

The quality of the effluent resembles those found in the Shushufindi and Agua Rico fields (Table 7-2). The produced water has a near neutral pH, it is saline, very hard, with high concentrations of TDS, TSS, chloride and sulphide. The concentrations of chloride, TSS, TDS, and sulphide substantially exceed the water quality criteria.

7.8 EFFLUENT AND RIVER IN THE CONONACO FIELD

7.8.1 Effluent

In the Cononaco field, effluent from the Cononaco Central production station (site E23) was discharged directly into the forest. The effluent has had notable effects on the forest. The vegetation in the immediate area of the discharge was dead or yellowed.

The quality of the effluent is notably different than those previously described. The produced water is very warm (48.0°C), slightly alkaline, moderately soft, and relatively low in concentrations of TDS, TSS and chloride (Table 7-2). Concentrations of TSS and sulphide exceed the water quality criteria.

7.8.2 Rio Shiripuro

Because the forest receives the effluent and the distance between the effluent discharge point and Rio Shiripuro is about one and one-half kilometres, a direct hydraulic connection between the effluent and the river is unlikely (Figure 6-1 and Table 7-2). The quality of the river was addressed because it is important for drinking and other domestic uses.

The river is alkaline, of the calcium bicarbonate type, with a moderate level of TSS (Table 7.3). As compared to the upstream sites on the other rivers previously described, Rio Shiripuro has low concentrations of TDS and the water is very soft. The total alkalinity concentration of 24 mg/L is considered low. Water with a total alkalinity concentration of <24 mg/L are susceptible to alterations in pH and consequently may have a serious impact on aquatic life (CCREM 1987). Only the concentration of TSS (156 mg/L) exceeded the water quality criteria (for drinking). The effluent from the production station had no apparent influence on the water quality of Rio Shiripuro.

7.9 EFFLUENTS AND RIVERS IN THE AUCA FIELDS

7.9.1 Effluents

In the Auca field, produced water effluents are released from the Auca Central (site E25) and Auca South (site E27) production stations (Figure 6-1). The produced waters are very warm, particularly at site E25 (43.0°C), have a near neutral pH, but are dissimilar with respect to TSS and some dissolved parameters (Table 7-2). The level of TSS at site E27 is more than twice that

PART-7.VI

CONFIDENTIAL PET 040795

found at site E25. More importantly, the TDS at site E27 is about four times higher. Water with TDS levels < 1000 mg/L are considered fresh, while those with levels between 10,000 and 100,000 mg/L are saline (McNeely et al. 1979). At both sites, the concentrations of TSS, TDS, chloride, and sulphide exceed the water quality criteria.

7.9.2 No Name River(a), No Name River(b) and Rio Tiputini

7.9.2.1 No Name River(a)

No Name River(a) receives produced water effluent from the Auca Central station (site E25). As compared to streams in other fields, the water quality of the river at site R26d, downstream of the effluent discharge is similar. It has a near neutral pH, is soft, and has low levels of total alkalinity and TPH (Table 7-3). However, by the same comparison, the concentrations of TDS and some major ions are elevated. The most revealing is that the water is of the sodium chloride type as compared to the calcium bicarbonate type which is characteristic of upstream sites in other rivers. The water upstream of the effluent discharge is probably of the calcium bicarbonate type and the change at the downstream site is likely the result of effluent discharge from Auca Central, since the effluent has a high concentration of chloride. It should be recognized that the river is about 1.5 m wide and <0.5 m deep and because of its low flow rate, the water quality can be easily influenced by the effluent. Only the level of TSS exceeded the water quality criteria.

7.9.2.2 No Name River (b)

No Name River(b), approximately 1.5 m wide and 0.5 m deep, receives produced water effluent from the Auca South station (site E27). The effluent flows along a poorly defined stream for about 0.25 km and then enters the river about 50 m upstream of site R29d (Photos 7-5 and 7-6). At the upstream (R28U) and downstream (R29d) sites the river had a near neutral pH, and low levels of TPH but most of the other parameters showed a notable difference. The most important differences are that the water type changed from a calcium bicarbonate to a sodium chloride, very soft to very hard and from fresh to slightly saline condition. The elevated levels of particularly sodium, chloride and TDS are likely the result of effluent discharge from Auca South. High concentrations of chloride and TDS are characteristic of the effluent. Because the river is small and has a low flow, its water quality can be significantly influenced by the effluent. Levels of TSS and TDS exceed the drinking water quality criteria.

PART-7.V1

CONFIDENTIAL OLOTION

Photo 7-5 Effluent from Auca South station entering a poorly defined stream before discharging into No Name River(b) about 50 m upstream of site R29d.

Photo 7-6 No Name River(b) at site R29d.

PART-7.V1

Ĩ

I

7-16

CONFIDENTIAL PET 040797

CA1069544

7.9.2.3 <u>Rio Tiputini</u>

Although Rio Tiputini does not directly receive effluent, the water quality was verified because it is a source of drinking water and provides other domestic uses and aquatic habitat. As compared to upstream sites on other rivers, the river has a similar pH (near neutral) and TPH but some important differences are evident. Rio Tiputini has a sodium bicarbonate type of water which is unlike that at the upstream sites of other rivers which have calcium bicarbonate waters. In addition, the concentrations of TDS (15 mg/L), total hardness (4 mg/L) and total alkalinity (8 mg/L) are the lowest found in the entire study area. The water is very soft and very susceptible to alterations in pH. Only the level of TSS exceeded the water quality criteria. The water quality of Rio Tiputini is probably characteristic of natural conditions in the drainage area.

7.10 EFFLUENTS AND RIVERS IN THE LAGO AGRIO FIELD

7.10.1 Effluents

In the Lago Agrio field, produced water effluents are released from the Lago Agrio Central (site E31) and Lago Agrio North (site E34) production stations (Figure 6-1 and Table 7-1). The effluents have a similar pH (near neutral), both exhibit high concentrations of sulphide but the North station effluent is considered saline and very hard (Table 7-2). In addition, the effluent at site E34 contained the highest concentration of TPH (21 mg/L) found in the entire study area. Concentrations of chloride, TSS, TDS and sulphide at the North station exceed the water quality criteria, while only TSS and sulphide levels at the Central station exceed the criteria.

7.10.2 Rio Teteye and No Name River(c)

7.10.2.1 <u>Rio Teteye</u>

Rio Teteye receives effluent from Lago Agrio Central and Lago Agrio North stations indirectly form drainage ditches and No Name River(c), respectively (Figure 6-1). The water quality in Rio Teteye at site R43d is similar to that found at the upstream site R35U. Our data indicates significant influence on water quality from the effluent discharged from the Central station (Table 7-3). The waters are soft, have a near neutral pH, of the calcium bicarbonate type and exhibit moderate concentrations of alkalinity and TDS. The concentrations of TSS at both sites exceed the water quality criteria.

7.10.2.2 No Name River(c)

No Name River(c) receives effluent directly from the North station (site E34). The effluent flows along a small stream before entering the river (Photo 7-7). At site R36d, downstream of the effluent discharge, the water is moderately soft, has a near neutral pH, and is of the sodium bicarbonate type. The higher concentrations of TDS and most of the major ions, as compared

PART-7.VI

CONFIDENTIAL PET 040798

to site R25U suggests some influence of the effluent. Effects of the effluent can be appreciated because the river at this site is shallow, <2 m wide and is located about 1.0 km from the station. Only the TSS concentration exceeded the water quality criteria.

7.11 EFFLUENTS IN THE ATACAPI, PARAHUACU AND GUANTA FIELDS AND RIO AGUA RICO

7.11.1 Effluents

Effluents from the Central stations in the Atacapi, Parahuacu and Guanta fields are released directly into wetland/forest areas (Figure 6-1, Table 7-1 and Photo 7-8). The effluents have near neutral pH and the sites at Atacapa and Guanta reveal the highest concentrations of TDS, total hardness, chloride and TSS found in the study area. The Atacapi site showed the highest level (10.2 mg/L) of sulphide. With a TDS of 147,000 mg/L, the effluent from the Atacapi site is considered a brine (McNeely et al. 1979). The concentrations of chloride, TSS, TDS and sulphide at all three sites exceed the water quality criteria.

7.11.2 **Rio Agua Rico**

Rio Agua Rico drains the Lago Agrio, Atacapi, Parahuacu and Guanta fields and after Rio Napo, it is the second largest river in the study area (Figure 6-1). The river water quality at sites R33U and R10d is similar (Table 7-3). It has a neutral pH, is of the calcium bicarbonate type, soft, with notably higher levels of turbidity, TSS and TPH at the downstream site. Such increases of these parameters can be expected through natural occurrence. The levels of TSS at both sites exceed the water quality criteria; TPH exceeded the criteria value at site R10d.

7.12 SUMMARY OF IMPACTS

The surface water sampling program was conducted during June 8 - 16, 1993. A total of 17 produced water effluents and 21 river water samples were collected which represent 10 oilfields. The characterization and assessments were based solely on field data collected for parameters and water quality criteria established by the Environmental Audit Technical Committee.

The study revealed that the water quality of effluents vary widely and the effluent discharges have influenced the water quality of some rivers. The produced waters generally have a near neutral pH, warm temperatures and are characteristically high in concentrations of total suspended solids, total dissolved solids, total hardness, chloride and sulphide. All total suspended solids values exceeded the water quality criteria. The salinity ranged from fresh found at Lago Agrio Central to a brine at Atacapi Central. Most of the total dissolved solids values exceeded the water quality criteria. Chloride concentrations, a major constituent of total dissolved solids, frequently exceed the criteria. Except for two, all remaining sulphide concentrations exceed the criteria. All concentrations of total petroleum hydrocarbons (TPH) and phosphorous in the effluents were within their respective criteria. CONFIDENTIAL PET 040799

PART-7.VI

7-18

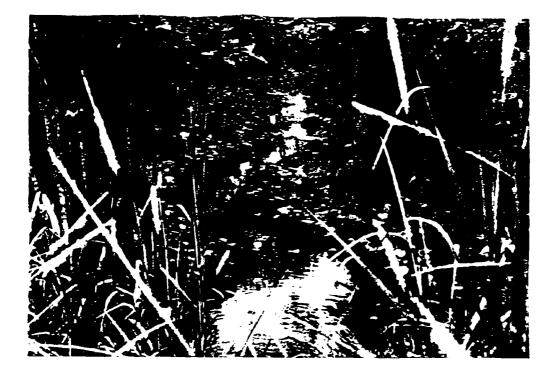


Photo 7-7 Produced water from the Lago Agrio North station flowing into the forest immediately downstream of the outlet (site E34) before entering No Name River(c)

Photo 7-8 Produced water discharged to a wetland/forest at the Atacapi Central station and typical for the Central stations at Parabuacu and Guanta

PART-7.VI

7-19

CONFIDENTIAL PET 040800

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

The effluent discharges have influenced the water quality of five rivers. The most important changes were found at: Rio Niutshinac, No Name River(a), No Name River(b) and No Name River(c). At the upstream sampling sites on these rivers, the waters had a near neutral pH, low levels of turbidity, total suspended solids, total dissolved solids, chloride and the waters were of the calcium bicarbonate type. Levels of total suspended solids occasionally exceeded the water quality criteria. At the downstream sites, the water quality showed important changes. Most revealing was that the water changed from a calcium bicarbonate to a sodium chloride type. At No Name River(c) the change was to a sodium bicarbonate. Due to the effluent, the water showed elevated levels of total suspended solids, total dissolved solids, most major ions, particularly sodium and chloride and increased hardness. Consequently, levels of total suspended solids, total dissolved solids, total dissolved solids, total dissolved solids, total etcores and chloride occasionally exceeded the water quality criteria.

The impacts of effluent discharge on the water quality and aquatic life of the receiving streams and rivers are summarized in Table 7-4. The impacts on water quality were evaluated by comparing the water quality analyses with the water quality criteria for drinking and aquatic life. Impacts on vegetation were based solely on observation. Impacts were rated high, medium and low according to the scoring system given in Table 6-4.

The effluents changed the water quality of some streams so that water quality for drinking and aquatic life was affected. The impacts ranged from none to moderate and were mainly the result of increased salinity and changes to the water from a calcium bicarbonate to sodium chloride type.

7.13 **REFERENCES**

- Canadian Council of Resource and Environment Ministers (CCREM). 1987. Canadian water quality guidelines. prep. by Task Force on Water Quality Guidelines.
- McNeeley, R.N., V.P. Neimanis, and L. Dwyer. 1979. Water quality sourcebook, a guide to water quality parameters. Inland water Directorate, Environment Canada, Ottawa, Ont. 88 pp.

PART-7.VI

CA1069548

TABLE 7-4

Summary of Impacts on Water Quality

Oilfield/Production Station	Receiving River or Land	Impacts on Water Quality and Vegetation
Shushufindi Central	forest/Rio Shushufindi	no apparent impact on Rio Shushufindi
Shushufindi North	small stream	stream has limited uses, impact is minimal to low; no impact on Rio Eno
Shushufindi South	Rio Niutshinac	low impact on drinking water and low to moderate impact on aquatic life of Rio Niutshinac due to increased salinity
Shushufindi Southwest	wetland/forest	no visible impact on vegetation; no impact on streams
Agua Rico Central	forest	moderate to high impact on vegetation adjacent to discharge; no impact on streams
Sacha North-2	cultivated field/Rio Jivino Rojo	no apparent impact on vegetation; no impact on streams
Sacha North	Rio Plandayacu	no impact on drinking water, low impact on aquatic life due to increased salinity
Sacha Central	drainage ditch/Rio Quincha Ya Cu/Rio Blanco	low to moderate impact on drinking water and aquatic life in Rio Blanco
Sacha Central	forest/Rio Quincha Ya Cu/Rio Blanco	no apparent impact on vegetation or streams
Sacha South	forest/Rio Huamayacu	no visible impact on vegetation
Yuca Central	plantations/Leguma Taracoa	no visible impact on vegetation
Cononaco Central	forest/Rio Shiriparo	no apparent impact on vegetation on Rio Shiripuro
Auca Centra	No Name River(a)	low impact on drinking water; moderate impact on aquatic life due to change in water type
Auca South	No Name River(b)/Rio Tiputini	low impact on drinking water; moderate impact on aquatic life due to change in water type; no impact on Rio Tiputini
Lago Agrio Central	Rio Teteye	no apparent impact on Rio Teteye
Lago Agrio North	No Name River(c)/Rio Teteye	low impact on drinking water; low impact on aquatic life due to change in water type; no impact on Rio Teteye
Atacapi Central	wetland/forest	no apparent impact on vegetation
Parahuaou Central	wetland/forest	no apparent impact on vegetation
Guanta Central	wetland/forest	no visible impact on vegetation

PART-7.VI

1

CONFIDENTIAL PET 040802

7-21

PART 8 - SUBSURFACE SOILS AND GROUNDWATER

This section of the report provides a discussion of the goals, methods and results of a broadbased investigation of subsurface soils and groundwater within the PETROECUADOR-TEXACO Consortium Oil Fields.

8.1 INTRODUCTION

The results of the Phase I Assessment indicated that the greatest potential for significant subsurface contamination appeared to exist at the production stations and well sites, particularly in the areas of pits, ponds and sumps. A large number of soil samples were collected during the Phase I Audit, primarily in order to determine what concentrations of assessment criteria constituents could be found at the margins of these features. During the Phase II subsurface investigation, our primary goal was to determine if there was evidence that these constituents had migrated through subsurface soils and groundwater, in a manner that might affect recommendations made in the Environmental Management Plan.

The specific goals of the Phase II subsurface investigation were:

- to determine the concentrations and distribution of assessment criteria constituents within subsurface soils and groundwater in the Assessment Area; and
- to develop an understanding of the potential for contaminant migration in the subsurface through a regional evaluation.

Our strategy for selecting the Phase II exploration sites was based partly upon our review of preliminary results of the Phase I Audit, and upon our understanding of the distribution of subsurface soil types and groundwater throughout the study area. Rather than attempting to explore each of the well sites (approximately 325) and production stations (22) throughout the Assessment Area, we focused instead upon defining how contaminants have migrated (and could be expected to migrate) through the subsurfaces of areas with similar hydrogeologic conditions. In other words, well sites and production stations were explored not only to determine their specific subsurface conditions, but also in order to predict subsurface conditions at other, unexplored sites in similar geologic settings. Aquifer testing was carried out at four separate locations in order to broadly define hydrogeologic conditions and groundwater migration rates throughout the study area.

PART-8.VI

8-1

AGRA Farth & Environmental Group

CONFIDENTIAL PET 040803

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

8.2 **REGIONAL GEOLOGY AND HYDROGEOLOGY**

In the upland areas south of the Rio Napo, and in the Gaunta and Lago Agrio Oil Field areas, the soils consist of red to reddish brown, stiff, kaolinitic clays (Atas del Mundo, 1982). Because of the high rainfall, the soil horizon has been profoundly leached and depleted in base metals (calcium, magnesium, sodium, and potassium) and silica; it has been enriched in iron and aluminium. The soils in the lowland alluvial flood plains between the Rio Napo and the Rio Aguarico developed on sediments recently derived from the Andes. These alluvial soils are typically poorly-drained and not as deeply weathered as the soil horizons on the hills.

Shallow groundwater occurs within unconfined and perched conditions within the Oriente Basin. Hand dug domestic water wells are common, particularly south of the Aguarico River and north of the Napo River. These water wells are generally less than five meters in depth. Springs are common in upland areas to the south of the Napo River, and north of the Napo River in the Lago Agrio and Guanta Field areas. These springs are partly controlled by perched aquifers, fractures and faults. Because of the occurrence of clayey soils of low permeability in the Study Area, the rate of recharge to the shallow aquifers is relatively low to moderate, and surface runoff to rivers is high. Typically, streams in humid tropical regions receive groundwater discharge, and the water table slopes towards the streams. Most vertical and lateral groundwater flow occurs along fractures within the clay or within silt or sand units.

8.3 METHODOLOGY

Our field explorations were carried out between June 8 and June 18, 1993, and consisted of collecting soil and groundwater samples from test pits, hand auger borings, springs and domestic water wells. Test pit excavations and hand auger borings were located near mud pits on the well sites and adjacent to the production water ponds and discharge points at the production stations. Groundwater samples were collected from domestic water wells and springs near production facilities and well sites, to screen for evidence of the subsurface migration of contaminants on the first occurring water table. The following sections describe exploration methods and sample handling procedures.

8.3.1 Soil Sampling Procedures

Subsurface investigations were conducted at production ponds in 13 of the larger stations located in the Sacha, Shushufindi, Lago Agrio, Auca, Guanta and Cononaco fields. We also explored 18 representative well sites within Lago Agrio, Sacha, Shushufindi, Aguarico, Auca and Cononaco fields. The excavation of test pits was accomplished using a rubber-tire backhoe at Shushufindi and Lago Agrio Fields (Photo 8-1), and with a trackhoe at Sacha Field. Subsurface sampling at Auca, Cononaco and Guanta Fields was carried out using stainless steel hand augers.

PART-I.VI

CONFIDENTIAL PET 040804 Test pit excavations generally ranged from 2.5 to 5.0 meters in depth. The locations of these test pits were selected in order to determine if there was evidence of migration of contaminants away from pits, ponds, sumps or other "high-risk" features. Soil samples were collected directly from excavations through the use of backhoe and trackhoe buckets, or from decontaminated Dutch-head hand augers. In order to eliminate the possibility of cross-contamination, hand augers were decontaminated between sampling episodes, and no samples were collected from soils that had been in contact with the internal surfaces of the buckets. As each bucket of soil (to be sampled) was removed from an excavation, a hand trowel was used to scrape away soils, in order to reach soil samples near the center of the bucket.

At most of the 31 subsurface exploration sites, test pit or hand-auger locations were sampled close to and at successive distances from "high risk" features such as mud pits. At most exploration sites, two or three test pits were excavated at successive distances from the "high risk" features. As an example, two test pits were excavated at the Aguarico Well 9. The first test pit was excavated to a depth of three meters, within a few meters of the northern margin of the large mud pit located at the site. Soil samples were collected at several intervals, following a visual inspection and logging of soil types. The second test pit was then excavated several tens of meters to the north, in order to determine if oil from the mud pit had migrated a significant distance through the subsurface soils or groundwater.

The process of collecting subsurface soils through test pit excavations, provided the basis of our characterization of shallow subsurface soils at each field. Samples were observed and classified in the field by two or more geologists. Representative portions of each sample were collected, placed in airtight, Teflon-sealed containers and transported on ice to the HBT AGRA laboratory in Edmonton, Alberta, Canada. All excavations were backfilled following test pit excavation and sampling. Geologic test pit and boring logs appear in Appendix H.

Petroleum-like odors, as noted on the test pit logs, are subjective information gathered or detected at the time of sampling. Detection of petroleum odors is partly dependent on the sensitivity of the person classifying the sample, as well as on other factors, including air and sample temperature, wind velocity, the length of time the sample is out of the excavation and product degradation. Because these constraints are not readily quantifiable, and no test standards exist, these observations should be considered as general subjective information.

8.3.2 Groundwater Sampling Procedures

Groundwater samples were collected from a total of 29 sites. These samples were taken directly from test pits, from hand auger borings using disposable bailers or other suitable decontaminated containers, from water wells and from springs. During test pit sampling, if a sufficient volume of groundwater was found to recharge an excavation, the water sample was collected directly into a water sample bottle attached to a rod. If only a small quantity of water infiltrated the excavation, the groundwater was collected with a decontaminated plastic bucket which was

PART-8.VI

CONFIDENTIAL PET 040805

lowered into the excavation with a rope. Samples collected from hand auger borings were collected with disposable bailers through slotted PVC pipe. Samples collected from springs and seeps were collected, when possible, directly from the point of discharge.

Each groundwater sample was inspected following collection and then immediately tested in the field for pH and specific conductance, using a Hydac Digital Conductance, Temperature and pH Tester. The samples were transported under chain-of-custody procedures to the HBT AGRA lab in Edmonton, Alberta, Canada.

8.3.3 Aquifer Testing Procedures

Rising head tests were conducted on piezometers located at the Shushufindi Central Production Station, Sacha Well 103, Sacha South Production Station and Auca Central Production Station. The purpose of the aquifer testing was to determine the hydraulic conductivity near the top of the first-occurring water table at these sites. Hydraulic conductivity is the rate of flow of water through a permeable medium.

The piezometers were installed in a two inch diameter hand auger boring. The slotted interval for each piezometer was 0.3 meters in length (Photo 8-2). The annulus between the hand auger boring and the PVC casing was less than one centimeter, and it was not possible to place a sand filter pack in this small annular space. A nylon stocking was used to cover the slotted interval of the casing to act as a filter (Photo 8-3).

The static water level in each well was measured prior to the start of each rising head test. Each test was performed by rapidly bailing water from the well with a bailer, and then closely monitoring the groundwater recovery for one-half hour to two hours. Water levels were measured with a steel tape coated with water-sensitive paste (Kolor Kut). The rising head test data were analyzed using the Hvorslev model for a well point in a uniform aquifer.

8.3.4 Laboratory Analysis of Soil and Water Samples

In accordance with the Final Assessment Criteria, soil samples collected during the Phase II subsurface investigation were tested for oil and grease by IR (USEPA Test Method 413.2). Inorganic constituents in soils, including heavy metals, were tested in the soil samples collected during the Phase I Assessment, and are discussed in Section 6.0 of this report.

Groundwater samples were analyzed for oil and grease (O&G) by U.S. EPA Test Method 413.2; groundwater samples were also tested for inorganic chemicals including calcium, chloride, iron, manganese, magnesium, sulfate, total dissolved solids, carbonate, bicarbonate, total hardness, total alkalinity, and pH; and for physical characteristics such as color, turbidity and specific

PART-8.V1

8-4

CA1069553

CONFIDENTIĂL

PET 040806

Photo 8-1 Backhoe used to excavate test pits at Shushufindi Field.

Photo 8-2 A slotted interval of 0.3 meters was cut in the PVC prior to installing the piezometer.

PART-8.VI

8-5

TAL 0807

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069554

conductance. Groundwater samples collected from test pits were tested primarily for O&G, since groundwater in the test pits was characterized by very high turbidity. Clays in tropical soils typically have high concentrations of iron and manganese, and groundwater samples with high concentrations of suspended clays may not be representative of dissolved concentrations of these constituents. In order to obtain more representative samples with low turbidity, inorganic constituents and other parameters were evaluated in samples from monitoring wells, domestic water wells and from springs located on or near well sites and production stations.

Groundwater samples were tested for O&G to screen for the presence of dissolved or suspended petroleum hydrocarbons. If a measurable thickness of free phase petroleum were identified during our subsurface investigation, a water sample was not collected or tested. A heavy petroleum sheen was identified on the surface of the water in Test Pit No. 1 of SSF-STC. Therefore, contamination of groundwater was noted at the site, but a groundwater sample was not collected or tested. Only one other test pit yielded evidence of free-phase petroleum hydrocarbons on the surface of the water table. This test pit was at Well Site 9 (Aguarico Field) and was excavated less than two meters from the margin of the mud pit, which contained a layer of oil on its surface.

It should be noted that while our field sampling procedures were designed to eliminate the risk of cross-contamination of samples, low levels of O&G (less than 1.0 ppm) can sometimes be introduced during field sampling or laboratory analysis. Nonpolar biogenic organic compounds other than petroleum hydrocarbons, such as humic or tannic acids, can be detected by the IR instrument during analysis. In other words, decaying vegetation can contribute to the presence of oil and grease in surface water or groundwater.

8.4 SUBSURFACE CONDITIONS

This section of the report provides qualitative information about soil types identified throughout the Study Area; the results of our aquifer testing are also included. As discussed in Section 8.1, our approach to the subsurface investigation was based upon defining widespread subsurface soil and groundwater conditions, and then conducting explorations for contaminants at select sites in order to predict how petroleum hydrocarbons and other potential contaminants could be expected to migrate through the subsurface. Quantitative results and our summary of impacts to the subsurface are presented in Sections 8.5 and 8.6.

Approximately one-half meter of sand and gravel fill was found to cover the native soils at all the well sites in the Study Area. The gravel fill is typically spread over timbers, originally used to create a foundation. Clay fill material was encountered at the Lago Agrio Central and North production stations adjacent to the production station ponds. Native soils encountered throughout most of the Study Area consists of silty clay with discontinuous lenses of sand or silt. Shallow groundwater above three to five meters of depth was often found throughout the Study Area, though sometimes this water was perched on stiff soils underlying the fill materials. The

PART-8.VI

CONFIDENTIAL PET 040808

subsurface conditions at each of the fields are discussed in the following sections, 8.4.1 through 8.4.7.

8.4.1 Shushufindi Field

Soils in the Shushufindi field area primarily consist of brown or reddish brown, stiff silty clay. In exploration test pits, the clay was found to occur from the base of fill to the total depths of the test pits at Shushufindi South Station, Well B66, Well B71, Well B57, Well A13, and Well A67. At Shushufindi Central Station, North Station, Southeast Station and Well A43, well sorted, fine to medium grained sand was encountered beneath the clay at depths of 0.9 to 3.1 meters below ground surface. The sand is locally cemented by iron, forming a hard pan layer between 0.5 and 1.5 meters thick. Iron concretions also occur within the unconsolidated sand or silt.

Shallow groundwater occurrence in the area of Shushufindi Field is sporadic, and appears to be partly controlled by topography. Groundwater was encountered in the test pit excavations at three out of ten sites. A water bearing sand was found between 2.0 and 3.6 metres at Central Station and at 3.0 meters at Southeast Station. Fractured clay also yielded groundwater at 1.0 meters of depth, in a test pit excavated at South Station. Surface water perched within the permeable sand and gravel fill, infiltrated the test pits excavated at Well B66, Well B71 and Well A67. Shallow domestic water wells near North Station, South Station, Southeast Station, and Well A43 were found to be less than four meters in depth.

A rising head slug test conducted on a piezometer installed within the silty sand at Central Station yielded a moderate hydraulic conductivity of 0.35 meter/day. This conductivity is consistent with the intrinsic permeability of a silty sand, which suggests that the shallow aquifer at Central Station is behaving as a uniform porous medium.

Visual or olfactory evidence of petroleum contamination was encountered at Central Station, North Station, Southeast Station and Well B57. Crude oil was noted in fractures and relict root channels at North Station and Well B57. A measurable layer of petroleum hydrocarbons was observed on the surface of the groundwater in the test pit located approximately 25 meters from the production ponds at Central Station (Photo 8-4). A discussion of test results for all soil and groundwater samples collected during our investigation is included in Section 8.5.

8.4.2 Aguarico Field

Soils in the vicinity of the Aguarico Field consist of stiff, brown or gray silty clay. A fine to medium grained sand was encountered beneath the clay at Aguarico Wells 3 and 10. The sand at Well 10 is laterally discontinuous and interfingers with silt.

PART-S.VI

CA1069556

CONFIDENTIAL PET 040809

Photo 8-3 A nylon stocking was used to cover the slotted interval of the PVC pipe to act as a filter.

Photo 8-4 Petroleum hydrocarbon layer on the groundwater encountered in testpit TP1 at Shushufindi Central Station.

PART-8.V1

4

•

8-8

CONFIDENTIAL 040810 PET

Groundwater was encountered at Aguarico Field between 0.84 and 3.0 meters below ground surface in water bearing sands, silts or fractured clays. It should be noted that Aguarico Station and some of the upland well sites have deeper groundwater.

Crude oil was noted in fractures within the clay at Well 3, and free phase petroleum hydrocarbons were identified on the groundwater at Wells 3 and 9.

8.4.3 Sacha Field

Soils at Sacha Field consist of silty clay with discontinuous layers of silt or fine sand. The shallow silt and sand layers range in thickness from 0.5 meters to at least 2.0 meters.

Groundwater was encountered in the more permeable sand, silt and fractured clays at Central Station, North #1 Station, South Station, Well 103 and Well 94. No groundwater was observed above the total depth of the test pit (3.5 meters) at Well 75. Rising head slug tests were conducted at Well 103 and South Station. The moderate to low hydraulic conductivities at Well 103 and South Station were 0.037 meters/day and 0.0092 meters/day, respectively. The conductivities for silty clay (between 10^{-5} meters/day and 0.009 meters/day).

Crude oil was identified in fractures and relict root channels in a test pit located near the production water discharge pond at North #1 Station (Photo 8-5).

8.4.4 Auca Field

-1

The soils in the Auca Field area are stiff, reddish brown to red, silty or sandy clay. Exposures on road cuts indicate that the red clay abruptly changes color to light gray at three to four meters below ground surface (Photo 8-6).

Perched groundwater was encountered in borings on a slope below the production ponds at Central Station and South Station. The groundwater occurs in a fine sand which overlies a less permeable clay. This groundwater appears to be seepage originating from production ponds which are situated up-slope from the borings (Photos 8-7 and 8-8). A rising head slug test conducted on a piezometer installed at the Auca Central Production Station indicated a moderate hydraulic conductivity of 0.01 meters/day. A major source of domestic water in the area is springs controlled by fractures within the clay or perched aquifers.

No visual evidence of significant petroleum contamination was noted in the hand auger borings near the production ponds at Central Station or South Station. Petroleum was observed on the ground surface near the production pond at Central Station.

PART-8.VI

8-9

CONFIDENTIAL PET 040811

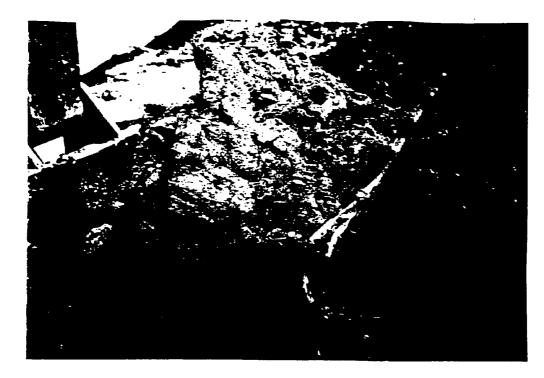


Photo 8-5 Crude oil in soil excavated near production pond at Sacha North #1 Station (TP1).

Photo 8-6 Soil profile exposed in cliff near Auca Central Station.

PART-8.VI

.

þ

ľ

,

:

ŀ

.

8-10

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069559

CONFIDENTIAL PET 040812

Photo 8-7 Production pond at Auca South Station located on bluff adjacent to flare stack. Produced water is seeping at the base of the bluff.

Photo 8-8 Production water seep located at toe of the slope below a pond at Auca Central Station. The location of a piezometer is indicated on the photo.

PART-8.VI

ļ

8-11

CONFIDENTIAL PET 040813

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069560

8.4.5 Cononaco Field

Soil encountered in hand auger borings at Central Station, and also observed in local road cuts, consist of reddish brown to red clay. No other soil types were identified during our investigation.

Groundwater was not encountered above 3.0 meters in the hand auger borings near the production pond at Central Station. As with Auca Field, springs in the vicinity are controlled by fractures and are often perched.

No visible evidence of contamination was noted in the subsurface soils near the production pond at the Central Station.

8.4.6 Lago Agrio Field

Undisturbed soils in the Lago Agrio Field consist of reddish brown, red or gray silty clay, with interbedded clayey silt or clayey sand layers which range in thickness from 0.1 to 1.0 meters. Clay fill was noted near the production ponds at Central Station and North Station.

Groundwater was encountered at 1.2 meters below ground surface at Well 32, and at 2.8 meters at North Station. No groundwater was noted in the test pit (4.5 meters total depth) at Well 1, nor in the hand auger borings (2.4 meters total depth) located near the production pond at Central Station.

No significant visual evidence of petroleum hydrocarbon contamination was noted in the test pits or borings at Central Station, North Station, Well 1 or at Well 32.

8.4.7 Guanta Field

Soils in the vicinity of the produced water pond at the Central Station are composed of medium stiff, brown silty clays. Saturated soils were encountered at 2.4 meters below grade in a hand auger boring. No visual evidence of contamination was noted in the boring.

8.5 QUANTITATIVE ANALYSIS

Test results for petroleum hydrocarbons in both soil and groundwater are summarized in Table 8-1. Groundwater test results for organic and inorganic parameters for samples collected from monitoring wells, domestic water wells and springs are presented in Tables 8-2 and 8-3. Laboratory reports and chain-of-custody records are included in Appendix G. Test results are discussed in the following sections.

PART-8.V1

CONFIDENTIAL PET 040814

TABLE 8-1

Soil and Groundwater Hydrocarbon Test Results for Test Pits and Borings Located on Well Sites and Production Stations PETROECUADOR-TEXACO Consortium

Site	Sample	Sol	Sample	Water Sample
	Name	Depth (m)	Oil and Grease (µg/g dry wt)	Oil and Grease (mg/L)
Shushufindi Field				
Central Station	TP2/4M TP3/4M	2.4 2.4	170 220	<0.2 <0.2
North Station	TP1 TP2	2.6 2	31 1100	
Southeast Station	TP1 TP2 TP3			0.5 <0.2 <0.2
South Station	TP1	3.5	1800	
Well Site A43	TP1 TP2	3 2	99 140	
Well Site B66	TP1		82	1
Well Site B71	TP1 TP2	2.7 1.2	260 510	0.5
Well Site B57	TP1 TP2	2.7 2.7	1 50 17000	
Well Site A13	TP1	3	42	
Well Site A67	TP1	3.6	410	
Aguarico Field				
Well Site 3	TP1 TP2	2	1700	67 8.3
Well Site 9	TP1	3	63	
	TP2	1	100	0.6
Well Site 10	TP1 TP2 TP3	3	140	0.9
<u>Sacha Field</u>				
Central Station	TP1 TP2	3.4	150	0.6
	TP3	5	75	CONFIDE PET 04
PART-8.V1		8-13		PEI

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069562

R

ļ

JĈ

TABLE 8-1 (CONT'D)

Site	Sample	Soi	il Sample	Water Sample
	Name	Depth (m)	Oil and Grease (µg/g dry wt)	Oil and Grease (mg/L)
South Station	TP1			< 0.2
	TP2	1	4100	
North #1 Station	TP1 TP2	3.5	2800	<0.2
Well Site 94	BH1			<0.2
Well Site 75	TP1	1	130	
Well Site 103	BH1	3.2	170	0.2
<u>Auca Field</u>				
Central Station	MW1 BH2 BH3	3.2 1.5	200 670	1
South Station	BH1 SS2	2.2 0.3	370 120	
Well Site 7	SS1 SS2	1 0.6	140 53	
Cononaco Field				
Central Station	BH1 BH2	0.8 2.8	160 130	
Lago Agrio Field				
Central Station	BH1 Co BH2	omposite 1	460 3100	
North Station	TP1 TP2	4.5 3.2	47 99	
Well Site 1	TPI	1.9	86	
Well Site 32	TP1	3.0	82	
Guanta Field	,			
Central Station	BHI	2.4	260	

PART-J.VI

3

ż

-

÷

......

CA1069563

TABLE 8-2

Analytical Results for Groundwater Collected from Monitoring Well and Production Pond Seeps PETROECUADOR-TEXACO Consortium

					Site		
Analytical Parameter	Unite	Proposed Criteria mg/L	Auca South Station	Auen Central Station	Shushufindi Central Station	Sacha Well Site 103	Sacha Well Site 94
Sample Name			AU-STS-SS1	AU-STC-MW1	SSF-STS-MW1	SA-103-MW1	SA-94-BH1
Source			Scep Near Production Pond	Monitoring Well Near Production Pond	Monitoring Well Near Production Pond	Monitoring Well Near Mud Pit	Monitoring Well on Well Site
Calcium	mg/L	100	236*	15.6	25.8	NT	NT
Magnesium	mg/L	50	66,5*	5	15.1	NT	NT
Potassium	mg/L	NA	101	2.9	1.1	NT	NT
Sodium	mg/L	NA	6755	270	20.9	NT	NT
Iron	mg/L	0.3	32.4*	28.7*	10.1*	NT	NT
Manganese	mg/L	0.05	4•	10.3*	0.69	NT	NT
Bicarbonate	mg/L	NA	74	82	47	NT	NT
Carbonate	mg/L	NA	<1	<1	<1	NT	NT
Chloride	mg/L	250	13800	490	135	NT	NT
Sulphate	mg/L	250	1.7	2.7	1.3	NT	NT
Lab Conductivity	mS/cm	NI	29	1.585	0.577	NT	NT
Field Conductivity	mS/cm				1	NT	NT
Lab pH		7.5	7.11	6.35	6.88	NT	NT

8-15

1

CONFIDENTIAL PET 040817 NT

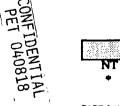
= Exceeds Proposed Assessment Criteria

= Not Tested

- High Concentration Probably Due to High Turbidity

PART-8.VI

٠


CA1069564

CA1069564

TABLE 8-2 (CONT'D)

					Site		
Analytical Parameter	Units I	roposed Criteri mg/L	Auca South Station	Auca Central Station	Shushufindi Central Station	Sacha Well Site 103	Sacha Well Site 94
Field pH					7.4	NT	NT
Color		15	3	500	33	NT	NT
Turbidity	NTU	5	88800	1800	2600	NT	NT
Total Alkalinity	mg/L	250	60	68	39	NT	NT
Total Hardness	mg/L	NA	863.139	59.5432	126.6044	NT	NT
Total Dissolved Solids	mg/L.	850	22345	1965	750	NT	NŤ
Oil and Grease	mg/L	0.1		1.0	NT	0.2	<0.2

8-16

= Exceeds Proposed Assessment Criteria

= Not Tested

- High Concentration Probably Due to High Turbidity

PART-8.V1

TABLE 8-3

Analytical Test Results for Groundwater Collected from Water Wells and Springs PETROECUADOR-TEXACO Consortium

<u></u>				Aguarica		Å	F A	Ceneasce		Lige /	erio	
Analytical Paramotar	Unita	Proposed Criteria ma/L	Well Ski /3	Well Site //	Well Sile /10	South Station	Central Station	Station	North Station	Well Site //20	Well Ska /21	Well Site //
Sample Name			AQ3-WW	AG9-WW	AG-10-WW	AU-ST3- SSI	AU-STC-	CON-STC-	LA-STN- WWI	LA20-55	LA21-55	LA26-5
Source			Water Well	Water Well	Water Well	Spring	Spring	Spring	Water Well	Spring	Spring	Spring
Location			Adjacent to well site	200 meters west of well site	Adjacent to well site	50 meters north of station	Adjacent to north boundary of station	50 meters west of station	Adjacent to west boundary of station	200 meters north of well site #20	100 meters north of well site #20	SO mete south o well sit #26
Celcium	mg/L	100	6.4	7.8	NT	3.3	2	3.4	23.9	6.9	6.9	1.4
Magnaaium	mg/L	50	2.2	0.9	NT	1.1	< 0.1	0.9	2.3	2.1	2.4	0.6
Potassium	mg/L	NA	1.4	L	NT	<0.1	0.8	1.2	4.2	1.6	0.8	<0.t
Sodium	mg/L	NA	2.1	1.9	NT	4.6	3.7	3.2	11.9	4.2	5.3	2.2
leon	mg/L	0.3	0.1	0.2	NT	0.1	0.12	1.51	0.1	1.31	0.1	0.11
Manganeze	mg/L	0.05	< 0.05	< 0.05	NT	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Bicarbonate	mg/L	NA	26	35	NT	36	19	35	95	51	50	16
Carbonate	mg/L	NA	<1	<1	NT	<1	<1	<1	<1	<1	<1	<1
Chioride	mg/L	250	1.8	I	NT	0.5	2.1	0.5	11	1.4	1.3	0.62
Sulphate	mg/L	250	5.5	1.5	NT	0.1	1.2	1.2	2.6	0.24	1.1	1.2
Lab Conductivity	m\$/cm	NA	0.076	0.062	NT	0.04	0.029	0.037	0.186	0.064	0.075	0.02
Field Conductivity	mS/cm		NA	NA	NT	0.05	NA	0.044	0.24	NA	0.094	0.04
Lab pH		7.5	6.63	6.93	NT	7.03	6.05	6.5	7.08	7.26	6.72	6.75
Field pH			NA	NA	TM	6.5	NA	6.3	6.3	NA	5.8	7
Color		15	NA	1	NT	5	ł	1	1	23	2	1
Turbidity	NTU	5	13	12	NT	3.3	2.6	5.3	5.5	7.8	3.1	5.8
Total Alkalinity	mg/L	250	23	29	NT	30	16	29	78	42	41	13
Total Hardness	mg/L	NA	25	23.1828	NT	12.7699	4,994	16.752	59.1497	25.8771	27.1125	6.96
Total Dissolved Solids Oil and Greese NT NA	mg/L	850	1.95	140	TM	860	275	265	420	460	315	250
Oil and Grease	mg/L	Ū. į	NT	<0.2	<0.2	Ē.Ū	0.75	NT	0,4		0.3	0.2

TABLE 8-3 (CONT'D)

. . .

n	eld				Secha					Shushufic	di Field	l :		
Analytical Parameter	Unita	Proposed Criteria mg/L	North #1 Station	South Station	Well Site 194	Well Site /100	Well Sile 890	South Station	North Station	Well Site /A43	Well Site #13	Well Site #6	Southeast Station	
Sample Name			SA-STNI- WW	SA-STS-WW	SA94- WW	SA100- WW	SA90- WW	SSF-ST3- WW	SSF-STN- WW1	SSF-A43- WW1	SSF-13- SS	SSF-09- WW	SSF-STSW- WW1	
Source			Water Well	Water Well	Water Well	Water Well	Water Well	Water Weli	Water Well	Water Well	Spring	Water Well	Water Well	
Location			75 meters west of station	300 meters south of station near Pueblo San Carlos	500 meters cast of well site	75 meters cast of well site	Adjacent to well site	Adjacent to well site	Adjacent to well site	Adjacent to well site	Adjacent to well site	Adjacent to well site	250 meters north of station	
Calcium	mg/L	100	7.9	8.1	11.5	13.5	4.4	5.6	7.8	6.5	NT	זא	NT	
Magnesium	mg/L	50	2.2	2.6	7.3	3.1	1.4	3.1	3.8	4.5	NT	NT	NT	
Potassium	mg/L	NA	1.5	1.2	26.9	2	1.3	1.4	1.2	1.3	NT	т	NT	
Sodium	mg/L	NA	3.3	3.8	19.7	5.8	5.2	2.8	5.3	4.4	NT	NT	NT	
Iroa	mg/L	0.3	< 0.05	< 0.05	0.13	0.17	0.16	£.0	<0.05	< 0.05	NT	NT	NT	
Manganese	mg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.58	<0.05	< 0.05	NT	NT	NT	
Bicarbonate	mg/L	NA	41	44	147	62	35	44	72	14	NT	NT	NT	
Carbonate	mg/L	NA	<1	<1	<1	<1	<1	<1	<1	<1	NT	NT	NT	
Chloride	mg/L	250	2.5	3.8	23	24	2.5	1.4	7	7.2	NT	NT	NT	
Sulphate	mg/L	250	2.4	1.3	3.1	2.4	2.7	0.9	1.4	1	NT	NT	NT	
Lab Conductivity	m\$/cm	NA	0.095	0.106	0.236	0.161	0.81	0.078	0.115	0.121	NT	NT	NT	
Field Conductivity	mS/cm		0.138	0.149	0.15	0.23	0.102	1.05	0.358	NA	NT	NT	1.65	
Lab pH		7.5	6.6	6.46	6.89	6.9	6.5	6.92	6.8	6.32	NT	NT	NT	
Field pH			5.9	5.5	6.1	6	5.6	6.5	6.5	NA	NT	NT	6.3	
Color		15	1	2	3	1	1	NA	1	3	NT	NT	NT	
Turbidity	NTU	5	1.4	4.4	3.4	3.9	5.3	10	1.1	1.4	NT	TM	ТИ	
Total Alkalinity	mg/L	250	34	36	121	51	29	36	59	12	NT	NT	NT	
Total Hardness	mg/L	NA	28.7859	30.9325	58.7769	46.4753	16.752	26.749	35.125	34.7615	NT	NT	NT	
Total Dissolved Solids	mg/L	850	440	335	370	250	265	60	225	165	NT	NT	NT	
Oil and Greass	mg/L	0.1	< 0.2	<0.2	<0.2	0,6	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	0.5	

- Exceeds Proposed Assessment Criteria

<u>1</u>

£...

- Not Tested

= Not Available

NA Part-4.vi

NT

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

11

.

CA1069567

٠

	Field		B	ackground Samples	
Analytical Parameter	Units	Proposed Criteria mg/L	Ville	Culebra	Ene
Sample Name					
Source			Spring	Spring	Water Well
Location			5.7 kilometers south of Auca Sur #1	9.2 kilometers south of Rio Napo	3 kilometers south of Eno
Calcium	mg/L	100	<0.1	0.8	7.3
Magnesium	mg/L	50	<0.1	0.5	3.4
Potassium	mg/L	NA	0.9	<0.1	1.2
Sodium	mg/L	NA	1.7	1.3	4.9
Iroa	mg/L	0.3	< 0.05	0.26	0.29
Manganese	mg/L	0.05	<0.05	<0.05	< 0.05
Bicarbonate	mg/L	NA	9	9	46
Carbonate	mg/L	NA	<1	<1	<1
Chloride	mg/L	250	0.38	0.6	3.6
Sulphate	mg/L	250	0.2	2.7	3.1
Leb Conductivity	mS/cm	NA	0.014	0.014	0.083
Field Conductivity	mS/cm		0.037	0.023	0.088
Lab pH		7.5	5.85	5.98	6.69
Field pH			5.1	5.3	6.1
Color		15	1	2	2
Turbidity	NTU	5	1.9	12	15
Total Alkalinity	mg/L	250	7	7	38
Total Hardness	mg/L	NA	<6	4.0566	32.2293
Total Dissolved Solids	mg/L	850	430	150	190
Oil and Grease	mg/L	0.1	<0.2	0.67	0.98

8-19

6

= Exceeds Proposed Assessment Criteria

- Not Tested
- Not Available

8.5.1 Shushufindi Field

A total of 14 subsurface soil samples were collected within Shushufindi Field. Concentrations were found to range from $31 \ \mu g/g$ (ppm) to 17,000 ppm. Concentrations of O&G in 13 of the samples were measured at less than 5,000 ppm. Moderately elevated concentrations of O&G were detected at North Station (1,100 ppm at 2.0 meters in test pit TP2) and at South Station (1,800 ppm at 3.5 meters in TP1). As mentioned in section 8.4.1, crude oil was noted in the fractures and root channels in soils excavated near the production pond at the North Station. Only one soil sample collected from the subsurface of Shushufindi Field exceeded the assessment criterion of 5,000 ppm (O&G). A concentration of O&G at 17,000 ppm was detected at 2.7 meters below ground surface in test pit TP2. Groundwater was not encountered in the test pit excavated at this well site.

A total of 14 groundwater samples were collected within Shushufindi Field. These included seven groundwater samples from test pits, one sample from a monitoring well, one sample from a spring, and five samples from domestic water wells. Of these samples, 13 were tested for O&G. Concentrations were below the detection limit of 0.2 mg/l in nine groundwater samples. Three samples yielded concentrations of 0.5 mg/l and one sample (TP1 at Well Site B66) contained a concentration of 1.0 mg/l.

As discussed above, free phase petroleum hydrocarbons were encountered in the groundwater in a test pit (TP1) at Shushufindi Central Station. This test pit is located 25 meters from the nearest production pond. Groundwater samples collected from the two other test pits, located over 50 meters from the production ponds, contained concentrations of O&G below detection limits.

Of the 14 Shushufindi groundwater samples, four were tested for inorganics and other drinkingwater parameters. Mildly elevated concentrations of iron and manganese were detected in a domestic water well near South Station, and in a monitoring well sample installed near the production pond at Central Station. The concentrations of these metals in these groundwater samples may be partly due to the high turbidity of the samples.

8.5.2 Aguarico Field

A total of four subsurface soil samples were collected from this field. Concentrations of O&G ranged from 63 to 1,700 ppm, all beneath the assessment criteria.

Eight groundwater samples were also collected within the field. Of the seven samples tested for O&G, two (both from water wells) were below the detection limit of 0.2 mg/l, two yielded concentrations less than 1.0 mg/l, and three were greater than 1.0 mg/l. One sample (TP1 from Well Site 3) was significantly elevated at 67 mg/l. Crude oil was noted in one of the three test pits at Well 9. Levels of O&G in the other test pit (TP2) at Well 9 was less than 1.0 ppm.

PART-J.VI

CONFIDENTIAL PET 040822

Water samples collected from domestic water wells located near the well sites yielded no evidence of significant levels of petroleum hydrocarbon or inorganic chemicals.

8.5.3 Sacha Field

Six subsurface soil samples were collected from Sacha Field. Concentrations of O&G ranged from 75 ppm to 4,100 ppm (all beneath the assessment criterion of 5,000 ppm). Elevated levels of O&G were detected in the soils at 3.5 meters near the production pond at North #1 Station (2,800 ppm) and at 1.0 meters in TP2 at South Station (4,100 ppm). At North #1 Station, oil was identified within fractures. The relatively low level (2,800 ppm) of O&G detected in the sample may be explained by a heterogeneous distribution of the oil in the soil.

Twelve groundwater samples were collected from Sacha Field. Concentrations of O&G were below the detection limit in eight of the 10 samples. Detectable levels of O&G were present in the groundwater sample collected from a test pit at Central Station (0.6 mg/l), in a domestic water well near Well Site 100 (0.6 mg/l) and in a monitoring well at Well Site 103 (0.2 mg/l). Levels of inorganic chemicals of all five water samples collected from wells in the Sacha Field area, were below assessment criteria levels. However, elevated chloride values were found in well site 94 (23 mg/l) and well site 100 (24 mg/l).

8.5.4 Auca Field

Six subsurface soil samples were collected within Auca Field. Concentrations of O&G ranged from 82 ppm to 670 ppm in the samples tested.

Three groundwater samples from Auca Field were tested. Levels of O&G in the groundwater samples collected from springs, seeps, and the monitoring wells at Central Station were all equal to or less than 1.0 ppm. Water samples collected from a monitoring well near the production pond at Central Station and from a seep near a production pond at South Station, yielded elevated concentrations of chlorides, with a high specific conductance.

8.5.5 Cononaco Field

Two subsurface soil samples were collected at Central Station in Cononaco Field. Test results for the two soil samples were 130 ppm and 160 ppm (O&G).

A spring sample was collected from the field, and it yielded an elevated concentration of iron (1.51 ppm). All other parameters were below the assessment criteria concentrations.

CONFIDENT

PART-8.VI

CA1069570

8.5.6 Lago Agrio Field

Six subsurface soil samples were collected at Lago Agrio Field. Concentrations of O&G were found to range from 47 ppm to 3,100 ppm. The highest concentration of petroleum hydrocarbons was identified in a soil sample collected near the production pond at Central Station (O&G at 3,100 ppm), 1.0 meter below ground surface. An organic, peat-like streak was noted in the sand fill at this depth, and the occurrence of a relict topsoil horizon in the fill may account for the elevated O&G concentration.

Four groundwater samples were collected within Lago Agrio Field. Concentrations of O&G in the groundwater samples were all above the assessment criterion of 0.1 mg/l, but were less than 1.0 mg/l.

8.5.7 Guanta Field

An O&G concentration of 260 ppm was detected in a subsurface soil sample at 2.4 meters near the production station pond.

8.5.8 Background Groundwater Samples

In order to establish the background concentrations of the assessment parameters used for the study, groundwater samples were collected from three domestic water wells and springs located far from production stations and well sites. Samples were collected from a spring located 5.7 kilometers south of Auca Sur #1, from a spring 9.2 kilometers south of the Rio Napo and from a domestic water well located 3 kilometers south of the pueblo Eno.

All three background groundwater samples were tested for the presence of O&G. One yielded a concentration below the detection limit of 0.2 mg/l. The other two samples contained concentrations of 0.67 mg/l and 0.98 mg/l, both above the assessment criterion of 0.1 mg/l. The elevated O&G levels in these samples are likely due to biogenic organics. Concentrations of the inorganic constituents in all three samples were within the assessment criteria standards, except for elevated turbidity in one spring sample and one water well sample.

8.6 SUMMARY OF IMPACTS TO THE SUBSURFACE

Through our visual observation of near surface soils and groundwater, testing of the upper water table aquifer and analysis of subsurface soil and groundwater samples through chemical testing, we have been able to identify and rate environmental impacts to the subsurface, for locations throughout the Study Area. A description of the scoring system used to rate environmental impacts is given in Table 6-4. Exploration sites with no evidence of subsurface contamination or oil-filled pits/ponds have been rated as "low". Sites with oil-filled pits/ponds, yet no evidence of significant subsurface contamination have been rated as "medium", and sites that

PART-8.VI

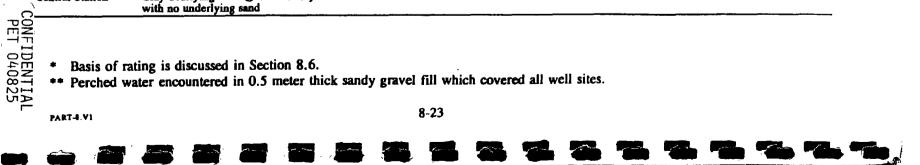

CONFIDENTIAL PET 040824

TABLE 8-4

Summary of Site Conditions and Impact Rating of Site PETROECUADOR-TEXACO Consortium

Site	Type of Soil	Groundwater Occurrence and Depth Encountered	Visual Evidence of Petroleum	Analytical Test Evidence	Impact Rating
Aguarico Field					
Well 3	Clay overlying sand @ 2.4 m	2.6 to 2.7 m	Petroleum on groundwater		High
Well 9	Clay	2.5 m	Petroleum on groundwater	67 ppm O&G in water	High
Well 10	Clay overlying sand and silt	1.75 to 2.5 m	No evidence		Medium
Auca Field					
Central Station	Clayey sand	Scepage from pond	No evidence	13,800 ppm chloride in water	High
South Station	Silty sand or sandy clay	Scopage from pond	No evidence	490 ppm chloride in water	Medium
Well 7	Clay	No groundwater encountered	No evidence		Low
Cononaco Field					
Station	Clay	No groundwater encountered	No evidence		Medium
<u>Guanta Field</u>					
Station	Clay	2.5 m	No evidence		Modium
Lago Agrio Field					
Central Station	Clay fill	No groundwater encountered	No evidence	3,100 ppm O&G in organic rich soil @ 1 m	Medium
North Station	Clay and sand fill	2.8 to 3.0 m	No evidence		Medium
Well 1	Clay	No groundwater encountered	No evidence		Low
Well 32	Clay	1.2 m	No evidence		Low
Sacha Field					
Central Station	Clay overlying sand @ 1 m or clay with no underlying sand	3 to 3.4 m	No evidence		Mediun

Basis of rating is discussed in Section 8.6.
** Perched water encountered in 0.5 meter thick sandy gravel fill which covered all well sites.

TABLE 8-4 (CONT'D)

Site	Type of Soil	Groundwater Occurrence and Depth Encountered	Visual Evidence of Petroleum	Analytical Test Evidence	Impact Rating*
South Station	Clay	No groundwater encountered	Petroleum odour noted in sand	4,100 ppm O&G in soil @ 4 m	Medium
North #1 Station	Clay overlying sand @ 4.3 m	4.5 m	Oil in sand	2,800 ppm O&G in soil @ 3.5 m	High
Well 75	Clay with interbedded soil	No groundwater encountered	No evidence		Medium
Well 94	Clay with interbedded silt	Perched groundwater in fill**	No evidence		Low
Sacha Field					
Well 103	Clay overlying sand @ 2.7 m	2.9 m	No evidence		Medium
Shushufindi Field		,			
Central Station	Clay overlying sand @ 0.9 to 1.9 m	2 to 3.6 m	Petroleum on groundwater		High
North Station	Clay overlying sand or clay with no underlying sand	No groundwater encountered	Oil in send	1,100 ppm: O&G in soil @ 2 m	High
Southeast Station	Clay overlying sand @ 3 m	3 m	Petroleum odour in soil		Medium
South Station	Clay	lm	Petroleum odour in soil	1,800 ppm O&G in sand @ 3.5 m	Medium
Well A43	Clay overlying sand @ 2.0 m	No groundwater encountered	No evidence		Medium
Well B66	Clay	Perched groundwater in fill++	No evidence		Medium
Well B71	Clay	Perched groundwater in fill++	No evidence		Medium
Well B57	Clay	No groundwater encountered	Oil in sand	17,000 ppm O&G in soil @ 2.7 m	High
Well A13	Clay	No groundwater encountered	No evidence		Medium
Well A67	Clay	Perched groundwater in fill**	No evidence		Low

CONFIDENTIAL DET 040826 CA1069573

Basis of rating is discussed in Section 8.6.
** Perched water encountered in 0.5 meter thick sandy gravel fill which covered all well sites.

PART-I.VI

have displayed evidence of contaminant migration in subsurface soils and/or groundwater have been rated as "high". The results of our rating are presented in Table 8-4.

Based on the results of our investigation, we have found little evidence of significant subsurface contaminant migration beyond the boundaries of the production stations and well sites. At most sites there was little evidence of contamination migrating beyond the margins of the "high risk" features such as mud pits and ponds. Seven of the sites investigated (25%) displayed evidence of contaminant migration in subsurface soils. Three exploration sites (Shushufindi-Central Station, and Aguarico Well Sites 3 and 9) were characterized by oil on the surface of the water table in excavations close to oily, open pits. In each case, contamination was found to diminish within a few tens of meters.

Vertical and lateral migration of contaminants in the subsurface generally was found to be limited by the low to moderate hydraulic conductivity of the upper water table aquifers, the low permeability of the clays commonly encountered throughout the Study Area and by the relatively low mobility of crude oil through the area's subsurface. At most exploration locations, the vertical migration of petroleum was found to be limited to fractures or root channels within clay soils. The greatest migration of oil through the subsurface was evident at sites with more permeable sand lenses or beds underlying the clay.

In general, we found concentrations of most organic and inorganic constituents in groundwater samples from domestic water wells and springs located within the Study Area, to be near or below the assessment criteria standards. The concentrations of O&G in domestic water wells, monitoring wells and spring samples located near oil wells and production stations, were found to be below the detection limit of 0.2 mg/kg at 12 sites and mildly elevated (equal to or less than 1.0 mg/l) in 10 others. Concentrations of O&G in water samples near well sites do not appear to vary significantly from background samples collected far from oil production sites.

8-25

8.7 REFERENCES

Atlas del Mundo, 1982. Atlas del Ecuador. Out of Paris, le edicion J.A.

CONFIDENTIAL

PART-8.V1

DRAFT.

PART 9 - SUMMARY OF ENVIRONMENTAL LIABILITIES

9.1 INTRODUCTION

The site assessment (Part 6), surface water investigations (Part 7) and subsurface soil and groundwater investigations (Part 8) identified and described environmental liabilities within the concession area. The following sections provide a prioritized ranking of these liabilities based on nature of the contamination and an assessment of environmental and human health risk.

9.2 PRIORITIZED RANKING OF ENVIRONMENTAL LIABILITIES

Before recommendations for further assessment and mitigation can be made, a prioritized ranking of environmental liabilities needs to be completed. This ranking was based on the environmental risk potential of each site. The environmental risk potential identifies those sites where the environmental liabilities are more likely to cause impacts to the environment or present the greatest health risk. The environmental risk potential was therefore used as a means to provide a relative ranking of sites. Sites exhibiting high risk potential should be remediated before sites which have been categorized as having a low risk potential.

To determine the environmental risk potential for each site, a contaminant impact rating and a site sensitivity rating were first developed. The contaminant rating and site sensitivity rating for each site were then given a score. The environmental risk potential was then calculated as the sum of the contaminant rating score and the site sensitivity rating score.

9.2.1 Contaminant Rating

The contaminant rating considers the nature of the contamination and its potential to impact offsite resources. The results of this assessment are discussed in Sections 6.5, 7.11.3 and 8.6. The results are summarized in Table 9-1 for the well site liabilities and Table 9-2 for the production station liabilities.

9.2.2 Site Sensitivity Rating

The site sensitivity rating considers receptors (human and environment) and contaminant exposure pathways such as streams and groundwater. The parameters which were used to determine site sensitivity included proximity to dwellings, proximity to surface water contamination of groundwater and nature of adjacent land use. The scoring method used to determine site sensitivity rankings of "high", "moderate" or low are provided at the base of Tables 9-1 and 9-2. Sites rated as having a high sensitivity are situated within 100 metres of a dwelling and/or surface water. The lands adjacent to highly sensitive sites are usually used CONFIDENTIAL

PART-9.VI

9-1

Earth & Environmental Group

AGRA

CA1069575

PET 040828

for agricultural purposes. Sites rated as being moderately sensitive are usually situated within 300 metres of a dwelling or surface water. Low sensitive sites are located adjacent to land which is not used for agricultural purposes, or dwellings or surface water was not located within 300 metres of the site.

9.2.3 Environmental Risk Potential

The environmental risk potential was determined for each site by summation of the contaminant rating score and the site sensitivity rating score. The scoring system used is described at the base of Tables 9-1 and 9-2. An overall score of 4-6 was categorized as a high risk potential, a score of 7-9 as moderate risk potential and a score of 10-13 as low risk potential.

The results of this assessment are summarized in Table 9-1 for well site liabilities and Table 9-2 for production station liabilities.

Where risk potential is considered high, action is required (although action may consist of further assessment). Where risk potential is considered medium, action is likely required. Where risk potential is considered low, action is not likely required.

CA1069576

CONFIDENTIAL PET 040829 Table 9 – 1 Well Site Environmental Risk Potential

	essed	Contami		Proximity Dwelling	to:(b) Water	Land Use	Site Sensitivity	Environmental Biole Detection (
5	Site	Rating					Rating (c)	Risk Potential (d
		St	nading c	of "High" ratin	gs provided	for clarity onl	y .	
A	1	Medium	=2	300	1 80	Mixed	7 =Moderate	9 = Moderat
A	2	Low	=4	350	300	Grazing	7 = Moderate	11 =Low
<u>A</u>	5	Low	=4	40	300	Mixed	5 =High	9 =Moderat
<u>A</u>	6	<u> </u>	=99	100	100	Grazing	4 =High	103 =None
<u>A</u>	8	Low	=4	300	300	None	9 =Low	13 =Low
<u> </u>	9		=99 =2	150 50	300 15	Grazing Mixed	6 = Moderate	105 = None
A	10 11B	Medium	= c = 4	20	5	Mixed	3 =High 3 =High	5 =High 7 =Modera
Â	12	Low	=4	375	300	Mixed	7 =Moderate	11 =Low
$\frac{2}{3}$	17	-	=99	500	300	Mixed	7 = Moderate	106 = None
<u>â</u> †	19	-	=99	15	300	Mixed	5 =High	104 = None
<u>â</u> t	20	Low	=4	70	300	Grazing	5 =High	9 = Moderat
Â	21	Low	=4	70	25	Mixed	3 =High	7 = Moderat
Â	26	Medium	=2	5	25	Mixed	3 = High	5 = High:
A	29	Low	=4	20	100	Mixed	4 =High	8 = Moderat
A	32	Low	=4	300	10	Grazing	S =High	9 = Modera
A	33	Low	=4	50	50	Mixed	3 =High	7 =Moderat
A	34	Low	=4	150	300	Mixed	6 = Moderate	10 =Low
A	35	Low	=4	350	70	Grazing	6 =Moderate	10 =Low
'H	2	Medium	=2	100	25	None	5 =High	7 =Modera
'H	5	Medium	=2	300	20	None	7 = Moderate	9 = Modera
NT]	1	Low	=4	350	300	None	9 =Low	13 =Low
\T [2	Medium	=2	200	100	None	7 = Moderate	9 = Moderat
NT	3	Low	=4	350	100	None	8 =Low	12 =Low
SU [1	High	=1	20	1	Mixed	3 =High	
iu	3	High	=1	100	10	Grazing	3 = High	· · · -
SU	5	High	±1	100	1	Grazing	3 =High	4 =High
iu	8	Medium	=2	20	1	Mixed	3 =High	5 =High
G	AG3	High	=1	20	300	Mixed	5 =High	6 =High
G	AG6	High	=1	200	200	Mixed	6 = Moderate	7 =Modera
G	AG8	High	=1	200	300	Grazing	6 = Moderate	7 =Modera
G	AG9	High	=1	150	100	Plantation	5 =High	6 =High
G	AG10	Medium		20	30	Grazing	3 =High	5.=High
SF	B57	High	=1	300	300	Mixed	7 = Moderate 6 = Moderate	8 =Modera 7 =Modera
SF SF	B59 61	High	=1 =1	150 300	300 300	Grazing Plantation	7 =Moderate	8 = Modera
SF	B63	High		100	300 10	Plantation	3 =High	. 4 = High
SF	B64	High High	- = =1	20	1	Mixed	3 =High	4 =High
SF	A65	Low	 	100	300	None	7 =Moderate	11 =Low
SF	866	High		50	15	Mixed	3 = High	4 =High
SF	A67	Medium	=2	300	300	Mixed	7 =Moderate	9 =Modera
SF	68	High	= 1	300	40	Grazing	5 =High	6 =High
SF	69	Low	=4	300	20	Grazing	5 =High	9 =Modera
SF	71	Medium	=2	300	20	Mixed	5 =High	7 =Modera
SF	WIW2	_	=99	350	300	Mixed	7 = Moderate	106 =None
SF	WIW4	-	= 99	50	300	Mixed	5 =High	104 =None
SF	WIW7	-	=99	100	200	Mixed	5 =High	104 = None
SF	A1	High]=1	30	70	Mixed	4 =High	5 =High
SF	A7	High	=1	300	300	Grazing	7 =Moderate	8 = Modera
SF	A9	Low		20	300	None	7 = Moderate	11 =Low
SF	A10	Low	=4	50	20	Grazing	3 =High	7 =Modera
<u> </u>					_			CONFIDENTI

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069577

CA1069577

٩ss	essed	Contami	nant	Proximity to):(b)	Land	Site Sensitivity	Environmental
(Site	Rating (a)		Water	Use	Rating (c)	Risk Potential (d)
							ي المحمد المكان المتعنين المعال	
		Sr	aoing	of "High" ratings	i providec	for clarity onl	y .	
SF	A13	High]=1	40	50	Mixed	3 =High	4 =High
SF	B15	High	=1	350	1	None	7 = Moderate	8 =Moderate
SF SF	B16 A20	High Medium	_]=1 =2	300 150	300 300	None None	9 = Low 8 = Low	10 =Low
SF	A22B	Medium	=2	350	200	None	9 =Low	10 =Low 11 =Low
iF	A24	High]=1	10	20	Mixed	3 =High	4 =High
ž	A26	Low	=4	50	25	Mixed	3 =High	7 = Moderate
F	A30	High	=1	20	50	Mixed	3 =High	4 =High
SF SF	B31 A33	Medium Medium	=2 =2	200	1	None	6 = Moderate	8 = Moderate
SF SF	A33 A34		=2 =99	5 300	70 300	Mixed None	. 4:=High: 9 =Low	6 =High 108 =None
ž	B36	High	=1	300	10	Mixed	5 =High	6 =High
F	A38	High	_=1	20	40	Mixed	3 =High	4 =High
SF .	A43	High	=1	1	300	Mixed	5 =High	6 =High
F	6B	High		75	300	Plantation	5 =High	6 =High
iF iF	A45 A45B	Medium Medium	=2 =2	150 200	300 300	Grazing NA	6 = Moderate 8 = Low	8 ≕Moderate 10 =Low
ir iF	46	Medium	=2	300	200	Mixed	a =Low 7 =Moderate	9 = Moderate
F	B49	High]=1	150	300	Grazing	6 = Moderate	7 = Moderate
F	A50			30	50	Grazing	3 =High	102 =None
ïF	B51	Medium	=2	20	50	Mixed	3 =High	5 =High
F	B52	Medium	=2	300	150	Mixed	6 =Moderate	8 = Moderate
F A	B55 WIW1	High	=1 =4	70 25	300 300	Mixed Plantation	5 =High	6 = High
A	WIW2	Medium	=2	50	100	Mixed	5 =High 4 =High	9 =Moderate 6 =High
A	WIW3		=99	50	300	Plantation	5 =High	104 =None
A	WIW4	Medium	_ =2	300	300	None	9 =Low	11 =Low
<u>A</u>	WIW5	High	1	50	300	Mixed	5 =High	6 =High
A A	<u>WIW6</u>	Medium Medium	=2	350	300	None	9 =Low	11 =Low
Ā	2	Medium	=2 =99	25 50	50 300	None Mixed	5 =High 5 =High	7 =Moderate 104 =None
A	8	High	=1	15	300	Plantation	5 =High	6 =High
A	9	Low	=4	100	50	Mixed	3 =High	7 = Moderate
<u>A</u>	11	Medium	_ =2	20	300	Plantation	5 =High	7 =Moderate
<u>A</u>	12	High		10	20	Mixed	3 =High	4 =High
A A	13	Low	=4 7 = 1	350 5	300	Grazing	7 = Moderate	11 =Low
A A	18	High High	=1	5 50	40 300	Plantation Plantation	3 =High 5 =High	4 =High 6 =High
À	19	High	=1	100	100	Plantation	4 =High	5 =High
	20	High	_ =1	30	50	Mixed	3 =High	4 =High
A	21	Medium	=2	350	300	Plantation	7 =Moderate	9 = Moderate
4	25	High	=1	25	100	Mixed	4 =High	
4	27 28	Medium Medium	=2 =2	20	300	Mixed	5 =High 6 = Moderate	7 = Moderate 8 = Moderate
$\frac{1}{2}$	32	Medium	=2	300 350	100 300	Grazing None	6 = Moderate 9 = Low	8 = Moderate 11 = Low
À	33	High	7=1	350	300	Mixed	7 =Moderate	8 = Moderate
A	34	Medium	=2	5	. 300	Mixed	5 =High	7 =Moderate
A	35	Low	=4	5	300	None	7 =Moderate	11 =Low
A	36	Medium	_ =2	350	300	None	9 =Low	11 =Low
٩.	43 44	High	=1	350	300	Plantation	7 =Moderate 9 =Low	8 = Moderate

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

.

CA1069578

	W	Table ell Site Environm	9 – 1 ental Risk	Potential	
Assessed	Contaminant	Proximity to : (b)	Land	Site Sensitivity	Environmental
Site	Rating (a)	Dwelling Water	Use	Rating (c)	Risk Potential (d)
	Shading	of "High" ratings provide	d for clarity on	ly.	
SA 46	Medium =2	60 20		3 =High	5 =High
SA 54	Medium =2	350 200		9 =Low	11 =Low
SA 55	Medium =2	100 300		5 =High	7 =Moderate
SA 56		300 300		7 = Moderate	106 =None
SA 58	High =1	50 300 100 300		5 =High	6 =High
SA 59 SA 60	$\frac{\text{High}}{\text{High}} = 1$	100 300 200 200		7 = Moderate 6 = Moderate	8 = Moderate
SA 80 SA 72	High =1 Medium =2	300 300		7 = Moderate	7 = Moderate
SA 73	Low =4	200 300		8 =Low	9 = Moderate 12 =Low
SA 74	High =1	300 300		7 = Moderate	8 = Moderate
SA 75	Medium =2	350 300		7 =Moderate	9 = Moderate
SA 77	Medium =2	300 40		5 =High	7 = Moderate
SA 78	High = 1	20 1	Grazing	3 ≕High	
SA 81	Medium =2	200 300	•	8 =Low	10 =Low
SA 84	Low =4	300 150	Plantation	6 = Moderate	10 =Low
SA 85	Medium =2	20 10	Mixed		5 =High
SA 86	Medium =2	350 100	None	8 =LOW	10 =Low
SA 91	Medium =2	350 300	None	9 =Low	11 =Low
SA 93	High : ≠1	1 100	Mixed	4 =High	5 = High
SA 94	Medium =2	350 10	Grazing	5 =High	7 =Moderate
SA 95	High =1	200 300	Mixed	6 = Moderate	7 = Moderate
SA 97	High =1	300 10		5 = High	6 =High
SA 100	High =1	350 300		7 = Moderate	8 =Moderate
SA 103	High = 1	300 10			6 =Hign
SA 104	Medium =2	300 300		7 = Moderate	9 = Moderate
SA 107	High =1	1 100		4 =High	-
SA 109	High =1	350 300		9 = Low	10 =Low
SA 110 SA 111	Low =4 Medium =2	50 300 350 40		5 =High 7 =Moderate	9 = Moderate 9 = Moderate
SA 111 SA 113	Medium =2 Medium =2	300 300		7 = Moderate 9 = Low	9 = MODEFATE 11 = Low
CU 2		300 300		3 = LOW 7 = Moderate	8 = Moderate
YB 2	High =1	300 1		7 = Moderate	8 = Moderate
	High =1	200 300		6 =Moderate	7 =Moderate
YU 6	- = 99	200 300		8 =Low	107 = None
YU 5	Medium) =2	150 300		6 = Moderate	8 = Moderate
YU 12	High =1	300 100		8 =Low	9 = Moderate
YUS 1	Low =4	1 30		3 =High	7 = Moderate
AU 1	High = 1	300 50		5 =High	6 =High
AU 4	High =1	200 300		6 = Moderate	7 =Moderate
AU 6	High =1	300 300		9 ≃Low	10 =Law
AU 7	Medium =2	350 1	None	7 = Moderate	9 = Moderate
AU 9	Medium =2	200 300	None	8 =Low	10 = Low
AU 11	High =1	20 100	Mixed	4 =High	5 =High
AU 12	High = 1	10 30	Plantation	3 =High	4 =High
AU 15	High =1	200 500	None	8 =Low	9 = Moderate
AU 16	High =1	300 100	Plantation	6 = Moderate	7 =Moderate
AU 17	High =1	300 100	Plantation	6 = Moderate	7 =Moderate
AU 18	Low =4	300 300	None	9 =Low	13 =Low
AU 198	High = 1	300 300	Grazing	7 = Moderate	8 = Moderate
AU 21	High = 1	300 100		8 =Low	9 = Moderate
AU 24	High = 1	100 100	Mixed	4 = High	5 =High
	·				CONFIDENTIAL

CONFIDENTIAL PET 040832

CA1069579

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

2

7

· 4

R.

ġ.

đ

ļ

5

1

Assessed	Contaminant	Proximity		Land	Site Sensitivity	Environmentai
Site	Rating (a)	Dwelling	Water	Use	Rating (c)	Risk Potential (d)
	Shading	of "High" ratin	gs provideo	for clarity only	y .	
AUS 1	Low =4	50	50	Plantation	3 =High	7 =Moderate
RM 1	Medium =2	350	300	None	9 = Low	11 =Low
CN 1	High =1	50	300	Plantation	5 =High	6 =High
CN 2 CN 3	<u>High</u> =1	10) 1	300 10	Plantation Plantation	5 =High 3 =High	6 =High
CN 8	- = 99	•	5	None	7 =Moderate	102 = None 106 = None
CN 11	Medium =2	300	300	None	9 =Low	11 =Low
CN 12	Medium =2	300	300	None	9 =Low	11 =Low
DU 1	-	20	20	None	5 =High:	104 =None
		lt H	rated as "M	high" score = " Aedium" score Dw" score = 4 Ione" score =	= 2	
	 Distance to dwellin Distance to water tivity scored as follow 	ng identified as identified as > vs:	s NA in Tab 200 metres	le E – 1 have 5 or NA in Tabl	 – 1 have been adjusted been adjusted to 400 e E – 1 have been adjusted 	metres.
	Proximity to Dwellin	ig li				
		н	>100 and	etres; Score = =<200 metre res; Score = 3	s; Score = 2	
	Proximity to Water	H H H	>100 and >200 metr = <50 met >50 and =	= < 200 metre	s; Score = 2 1 ; Score = 2	,
	Proximity to Water	ក ក រា រា រា រា រា	>100 and >200 metr = <50 metr >50 and = >150 metr	= < 200 metre res; Score = 3 tres; Score = = < 150 metres res; Score = 3 , Grazing or Mi	s; Score = 2 1 ; Score = 2	,
		ר איז איז איז איז איז איז איז איז איז איז	>100 and >200 metri = <50 metri >50 and = >150 metri Plantation, None Score Sum of the a ow Risk = Noderate Ri	= < 200 metre res; Score = 3 tres; Score = = < 150 metres res; Score = 3 , Grazing or Mi	s; Score = 2 ; ; Score = 2 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	,
d) Environme	Land Use	11 11 11 11 11 11 11 11 11 11 11 11 11	>100 and >200 metric = <50 metric >50 and = >150 metric Plantation, None Score Sum of the a ow Risk = Moderate Riv ligh Risk =	= <200 metre res; Score = 3 tres; Score = 4 < 150 metres res; Score = 3 , Grazing or Mi re = 3 above scores. Scores of 8 or isk = Scores of	s; Score = 2 ; ; Score = 2 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	,
d) Environme	<u>Land Use</u> <u>Final Scoring</u> antal dsk potential ca	liculated as fol ion impact sco ed to estimate tial = if sum of tial = if sum of	>100 and >200 metri = <50 metri >50 and = >150 metri Plantation, None Score Score Rid ligh Risk = Noderate Rid ligh Risk = Noderate Rid ligh Rid lig	= < 200 metre res; Score = 3 tres; Score = 3 (res; Score = 3 , Grazing or Mi re = 3 above scores. Scores of 8 or isk = Scores of Scores of 3, 4 or 99) and sit ntal risk poten 4,5, or 6. rs is 7, 8 or 9. 0, 11, 12 or 13	s; Score = 2 ; ; Score = 2 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	^{°,} 4,5,6,7, 8 or 9)
d) Environme	Land Use Final Scoring antal dsk potential ca Sum of contaminat result in a score us – "High" risk poten – "Moderate" risk p	liculated as fol ion impact sco ed to estimate tial = if sum of tial = if sum of	>100 and >200 metri = <50 metri >50 and = >150 metri Plantation, None Score Score Rid ligh Risk = Noderate Rid ligh Risk = Noderate Rid ligh Rid lig	= < 200 metre res; Score = 3 tres; Score = 3 (res; Score = 3 , Grazing or Mi re = 3 above scores. Scores of 8 or isk = Scores of Scores of 3, 4 or 99) and sit ntal risk poten 4,5, or 6. rs is 7, 8 or 9. 0, 11, 12 or 13	s; Score = 2 ; ; Score = 2 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	4,5,6,7, 8 or 9)

CONFI SDNY - 04 CIV 8378

:

CA1069581

1

Table 9 - 2 Environmental Risk Potential for Production Stations

		Environmer	Table 9 ntal Risk Potentia	al for Production S	Stations		
Contaminant Proximity to : (b) Land Site Sensitivity Environmental							

Shading of "High" ratings provided for clarity only.

Guanta	Wash Tank	Medium	=2	20	1	Plantation	3 =High	5 =High
Goand	Fuel Tank (Diesel)	Low	=4	LU	•		0 — I light	7 =Moderate
	Pump/Compressor	Medium	=2					5 =High
	Flare Une	Medium	=2					5 =High
	Flare Stack	Low	=4					7 = Moderate
	Separation Pits	High	= 1					4 =High
Aguarico	Separator	Low	=4	200	20	Forestry	6 = Moderate	10 =Low
-	Wash Tank	Medium	=2					8 =Moderate
	Surge Tank	Low	=4					10 =Low
	Lined Sump	Medium	=2					8 = Moderate
	Flare Stack N.	Low	=4					10 =Low
	Flare Stack S.	Medium	=2					8 =Moderate
	Pit	Medium	=2					8 =Moderate
Shushufindi	Separator	Medium	=2	20	10	Mixed	3 =High	5 =High
Central	Vehicle Maintenance	High	=1					4 ≕High
	Wash Tank	Low	=4					7 =Moderate
	Surge Tank	Low	=4					7 =Moderate
	Chemical Tank	High	=1				,	4 =High
	Fuel Tank (Diesel)	High	=1					4 =High
	Fuel Tank (Diesel)	High	=1					4 =High
	Fuel Tank (Jet)	High	=1					4 =High
	Pump/Compressor	High	=1					4 =High
	Flare Stack	Low	=4					7 =Moderate
	Separation Pits	Medium	=2					5 =High
Shushufindi	Wash Tank	Medlum	=2	20	20	Plantation	3 =High	5 ≕High
North	Surge Tank	Medium	=2					5 =High
	Chemical Tank	Medium	=2					5 =High
	Pump/Compressor	Medium	=2					5 =High
	Gas Vent	High	=1					4 =High
	Flare Stack	Medium	=2					5 =High
	Separation Pits	High	=1					4 =High

and the second

	069582
ITIAL 835	CA1069
IDEN 040	0
PET	

5.33

葡

10

Table 9 – 2Environmental Risk Potential for Production Stations

Contaminant Proximity to : (b) Land Site Sensitivity Environmental Station Spill Source Rating (a) Dwelling Water Use Rating (c) Risk Potential (d)	Contraction of the local data and the local data an								
Station Spill Source Rating (a) Dwelling Water Use Rating (c) Risk Potential (d)			Contaminant	Proximity	(to : (b)	Land	Site Sensitivity	Environmental	50
	Station	Spill Source	Rating (a)	Dwelling	Water	Use	Rating (c)	Risk Potential (d)	 1

Shading of "High" ratings provided for clarity only.

Atacapi	Separator Separation Pits	High	=1	300	50	Mixed	5 =Hlgh	9 = Modelate 6 = High
Atacani		Low	=4	300		Alizad	5 Hiab	9 =Moderate
	Separation Pits	High	=1					6 ≕High
	Flare Stack	Low	 =4					9 =Moderate
	Flare Line	High						6 =High
	Pump/Compressor	Low	=4					9 =Moderate
	Separator	Low	=4					9 =Moderate
2 22400	Surge Tank	Low	=4		•		e engr	9 =Moderate
Parahuacu	Well Site	Medium	=2	100	1	Forestry	5 ⇔Hlgh	7 =Moderate
	Separation Pits	🐭 High	=1					6 ≠High
	Flare Stack	Low	=4					9 = Moderate
	Pump/Compressor	Low	=4					9 =Moderate
	Wash Tank	Low	=4					9 =Moderate
North	Surge Tank	Low	=4				•	9 =Moderate
Lago Agrio	Separator	Low	=4	50	250	Plantation	5 ≕High	9 =Moderate
	Separation Pits	High	=1					6 =High
	Waste Pit	High	=1					6 ≕High
	Flare Stack	Low	=4					9 = Moderate
	Vehicle Maintenance	Medium	=2					7 =Moderate
	Lined Sump	Low	=4					9 =Moderate
•	Pump/Compressor	Low	=4					9 =Moderate
	Fuel Tank (Jet)	Low	=4					9 =Moderate
	Fuel Tank (Gas)	Low	=4					9 =Moderate
	Fuel Tank (Diesel)	Low	=4					9 =Moderate
	Chemical Tank	Low	=4					9 =Moderate
	Surge Tank	Low	=4					9 =Moderate
Central	Wash Tank	Low	=4					9 =Moderate
.ago Agrio	Separator	Low	=4	100	100	Industry	5 =High	9 =Moderate

		Contaminant	Proximity	to:(b)	Land	Site Sensitivity	Environmenta
Station	Spill Source	Rating (a)	Dwelling	Water	Use	Rating (c)	Risk Potential (
		Shading	of "High" ratings	provided for clar	ity only.		
Shushufindi	Pipeline	Low =	4 300	300	Piantation	7 =Moderate	11 =Low
South	Separator	Low =	1				11 = Low
	Wash Tank	Low =	1				11 =Low
	Surge Tank	Low =	4				11 ≕Low
	Pump/Compressor	High =	1				8 =Moderate
	Lined Sump	High =	1				8 =Moderate
	Flare Stack	Low =	4				11 =Low
	Separation Pits	High =	1				8 =Moderate
Shushufindi	Separator	Low =	4 100	10	Mixed	3 =High	7 =Moderate
Southwest	Wash Tank	Medium =	2			-	5 =High
	Chemical Tank	Medium =:	2				5 =High
	Fuel Tank (Diesel)	Low =	\$				7 =Moderate
	Pump/Compressor	Low =	\$				7 =Moderate
	Lined Sump	Medium =:	2				5 =High
	Flare Stack	Low =	1				7 =Moderate
	Off-Site Waste Pit	High =	1				4 =High
	Separation Pits	High =	1				4 =High
Shushufindi Water Inj.	Pump/Compressor	High =	1 250	10	Grazing	4 =High	5 =High
Sacha	Vehicle Maintenance	Low =	\$ 50	700	Mixed	5 #High	9 =Moderate
Central	Separator	Low =	ŧ				9 =Moderate
	Wash Tanks (2)	Medium =:	2				7 =Moderate
	Surge Tank	High =	1				6 =High
	Chemical Storage	High =	t				6 =High
	Fuel Tank (Diesel)	Low =	ł				9 =Moderate
	Fuel Tank (Diesel)	Medium =	2				7 =Moderate
	Pump/Compressor	Low =	ŧ				9 =Moderate
	Flare Stack	Low =	\$				9 =Moderate
	Separation Pits	High =	1				6 =High
Sacha	Separator	Low =	40	20	Plantation	3 =High	7 =Moderale
North # 1	Wash Tank	Low =	4				7 =Moderate

Table 9 – 2Environmental Risk Potential for Production Stations

CA1069583

	_							
		SI SI	nading o	f "High" ratings p	rovided for clar	ity only.		
	Fuel Tank (Diesel)	Low	=4					7 =Moderate
	Flare Stack	Low	=4					7 =Moderate
	Separation Pits	Medium	=2					5 =High
Sacha	Separator	Low	=4	50	150	Mixed	4 ≖High	8 =Moderate
North # 2	Wash Tank	Low	=4					8 =Moderate
	Surge Tank	Low	=4					8 =Moderate
	Pump/Compressor	Low	=4					8 =Moderate
	Flare Stack	Low	=4					8 =Moderate
	Separation Pits	High	=1					5 =High
Sacha	Separator	Low	=4	10	10	Mixed	3 =High	7 =Moderate
South	Wash Tank	High	··· =1					4 =High
	Surge Tank	High	=1					4 =High
	Pump/Compressor	Low	=4					7 =Moderate
	Flare Stack	Low	=4					7 =Moderate
	Separation Pits	High	=1					4 =High
Culebra	Pipeline	Low	=4	20	300	Plantation	5 =High	9 =Moderate
	Wash Tank	Low	=4					9 =Moderate
	Fuel Tank (Diesel)	Low	=4					9 =Moderate
	Pump/Compressor	Low	=4					9 =Moderate
	Former Pit	Low	=4					9 =Moderate
Yulebra	Wash Tank	Low	=4	800	30	Mixed	5 =High	9 =Moderate
	Fuel Tank (Diesel)	Low	=4					9 =Moderate
	Pump/Compressor	Medium	=2					7 =Moderate
	Lined Sump	Low	=4					9 =Moderate
	Flare Stack	Low	=4					9 =Moderate
	Pit	High	=1					6 =High

Table 9 – 2Environmental Risk Potential for Production Stations

•

قبد لا

۸

...

.

.....

		Contaminant	Proximity	to:(b)	Land	Site Sensitivity	Environmenta
Station	Spill Source	Rating (a)	Dwelling	Water	Usə	Rating (c)	Risk Potential (
		Shading	of "High" ratings	provided for clar	ity only.		
Yuca	Separator	Low =	4 300	100	Forestry	7 =Moderate	11 =Low
	Wash Tank	Low =	4				11 =Low
	Surge Tank	Low =	4				11 =Low
	Chemical Tank	Low =	4				11 =Low
	Fuel Tank (Diesel)	Low =	4				11 =Low
	Fuel Tank (Jet)	Low =	4				11 =Low
	Pump/Compressor	Low =	4 .				11 =Low
	Lined Sump	Medium =	2				9 =Moderate
	Flare Stack	Low =	4				11 =Low
	Separation Pits	High =	1				8 =Moderate
Auca	Vehicle Maintenance	Medium =	2 100	100	Mixed	3 = High	5 =High
Central	Separator	Low =	4				7 =Moderate
	Fuel Tank (Diesel)	Low =	4				7 =Moderate
	Pump/Compressor	Low =	4				7 =Moderate
	Generator	Low =	4				7 =Moderate
	Sumps	Medium =	2				5 =High
·	Flare Stack	Low =	4				7 =Moderate
	Separation Pits	High =	1				4 =High
Auca	Pipeline	Low =	4 200	50	Forestry	6 =Moderate	10 =Low
South	Separator	Medium =	2				8 =Moderate
	Wash Tank	Medium =					8 =Moderate
	Pump/Compressor	Medium =	2				8 = Moderate
	Generator	Low =	4				10 =Low
	Flare Stack	Low =	4				10 =Low
	Separation Pits	High =	1		<u> </u>		7 =Moderate
Auca Sur	Fuel Tank (Diesel)	Medium =		20	Plantation	3 ≓High	5 =High
	Pump/Compressor	Medium =					5 =High
	Generator	Medium =					5 =High
	Pit	High =	1				4 =High

1

i

:

ļ

. | |

繑

÷.

٨.

;

ł

CA1069585

		Contaminant	Proximity	to:(b)	Land	Site Sensitivity	Environmental
Station	Spill Source	Rating (a)	Dwelling	Water	Use	Rating (c)	Risk Potential (d)
		Shading	of "High" ratings	provided for clar	ity only.		
Cononaco	Lined Sump Flare Stack Separation Pit	Medium =2 Low =4 High =1	20	300	Plantation	5 =High	7 =Moderale 9 =Moderale 6 =High
Dureno	Surge Tank Lined Sump Flare Stack Separation Pit	Low =4 Low =4 Low =4 	20	20	Forestry	5 =High	9 =Moderate 9 =Moderate 9 =Moderate 6 =High
(a) Contaminar	nt impact rating detail provid	led on Table 6 - 7 .		If rated as "High" If rated as "Medic If rated as "Low"	um" score = 2		
				If rated as "None			
(b) Some adjus	iments to the data were rec		lations. These ac	If rated as "None djustments includ	• score = 99 de:		
(b) Some adjus	iments to the data were rec	Distance to dwellin Distance to dwellin	lations. These ac ng identified as : ng identified as i	If rated as "None djustments incluc >200 metres in T NA in Table E – 2	* score = 99 de: [able E-2 (Vol (Volume I) ha	ume I) have been adjusted ve been adjusted to 400 m Volume I) have been adju	netres.
	iments to the data were rec ity scored as follows:	Distance to dwellin Distance to dwellin	lations. These ad ng identified as : ng identified as I identified as >20 1	If rated as "None djustments incluc >200 metres in T NA in Table E – 2	* score = 99 Ge: (Volume I) ha In Table E-2 (); Score = 1 200 metres; Sco	ve been adjusted to 400 m Volume I) have been adju	netres.
		Distance to dwellin Distance to dwellin Distance to water	lations. These ad ng identified as : ng identified as I identified as >20 1	If rated as "None djustments incluc >200 metres in T NA in Table E – 2 00 metres or NA If =< 100 metres If > 100 and =<2	* score = 99 de: (Volume I) ha in Table E-2 (Vol ; Score = 1 200 metres; Sco Score = 3 Score = 1 50 metres; Sco	ve been adjusted to 400 m Volume I) have been adju xe = 2	netres.
		Distance to dwelfil Distance to dwelfil Distance to dwelfil Distance to water Proximity to Dwelling	lations. These ad ng identified as : ng identified as / identified as >20	If rated as "None djustments includ >200 metres in T NA in Table E -2 00 metres or NA If = < 100 metres If > 100 and = <2 If >200 metres; If = <50 metres; If > 50 and = < 1	* score = 99 de: (Volume I) ha In Table E - 2 (Vol In Table E - 2 (; Score = 1 200 metres; Sco Score = 1 50 metres; Sco Score = 3 zzing or Mixed S	ve been adjusted to 400 m Volume I) have been adju pre = 2 re = 2	netres.
		Distance to dwelfil Distance to dwelfil Distance to dwelfil Distance to water Proximity to Dwelfing Proximity to Water	lations. These ad ng identified as i identified as >20 1	If rated as "None djustments includ >200 metres in T NA in Table E -2 00 metres or NA If $=$ <100 metres If >100 and $=$ <2 If >200 metres; If >50 and $=$ <19 If >50 metres; If >150 metres; If >150 metres;	* score = 99 de: [able E-2 (Voli (Volume I) ha in Table E-2 (; score = 1 200 metres; sco score = 3 score = 3 score = 3 izing or Mixed S 3 e scores. e scores. scores of 6 or 9.	ve been adjusted to 400 m Volume I) have been adju ore = 2 Score = 1	netres.

Table 9 - 2

,

PART 10 - CONCLUSIONS AND RECOMMENDATIONS

This section provides recommendations for assessment and remediation required at each of the assessed sites within the Concession oil fields. A summary of the recommended actions is given in Table 10-1 for the well sites and Table 10-2 for production stations. A rating scale of 1 or 2 has been used to prioritize mitigation actions with the highest priority corresponding to a rating of 1.

The following is a summary of the recommended actions for each of the main types of environmental liabilities identified during the site assessment studies and the facility audit. The recommendations relating to present operational practices are based on the need for the oil field operations to comply with current Ecuadorian Law and conform to current international practices.

10.1 CONCLUSIONS AND RECOMMENDATIONS FROM THE SITE ASSESSMENTS

All of the twenty-two production stations and 163 (50%) of the well sites in the concession oil fields were assessed. The following conclusions and recommendations relate to these sites investigated.

10.1.1 Well Site Assessment Recommendations

Contamination observed at assessed well sites was generally attributable to one or more of the following: spills resulting from workovers, spills occurring during drilling activities, spills associated with flowlines, contamination resulting from oil applications to the well site pad, disposal of solid domestic waste, spills resulting from leaks at meter stations, spills resulting from siphoned discharge from well site pits, contaminant migration from pits and disposal of filters in pits.

The following are specific recommendations arising from the well site assessment.

Well Sites

• The extent of contamination within the large stained areas should be confirmed by further assessment particularly at sites where spills have migrated off-site or impacted surface waters (Table 10-1).

CONFIDENTIAL PET 040840

AGRA Earth & Environmental Group

PART-10.V1

10-1

Table 10 – 1
Prioritized Ranking of Recommended Actions for
Assessed Well Sites

Assessed Site		Further	Remediation (b)
. S	ite	Assessment (a)	
LA	1	Yes	Yes (2)
LA	2	_	-
LA	5	_]	Yes (2)
LA	6	-)	- 1
LA	8	_	-
LA	9	-	
LA	10	Yes	Yes (1)
LA	11B	-	Yes (2)
LA	12	_	-
LA	17	-	-
LA	19	-	-
LA	20	-	Yes (2)
LA	21	-	Yes (2)
LA	26	Yes	Yes (1)
LA	29	- [Yes (2)
LA	32	-	Yes (2)
LA	33	-	Yes (2)
LA	34	-	-
LA	35	_ ·	– ·
PH	2	Yes	Yes (2)
PH	5	Yes	Yes (2)
AT	1	-	-
AT	2	Yes	Yes (2)
AT	3	-	-
GU	1	Yes	Yes (1)
GU	3	Yes	Yes (1)
GU	5	Yes	Yes (1)
GU	8	Yes	Yes (1)
AG	AG3	Yes	Yes (1)
AG	AG6	Yes	Yes (2)
AG	AG8	Yes	Yes (2)
AG	AG9	Yes	Yes (1)
AG	AG10	Yes	Yes (1)
SSF	B57	Yes	Yes (2)
SSF	B59	Yes	Yes (2)
SSF	61	Yes	Yes (2)
SSF	B63	Yes	Yes (1)
SSF	B64	Yes	Yes (1)
SSF	A65	-	-
SSF	B66	Yes	Yes (1)
SSF	A67	Yes	Yes (2)
SSF	68	Yes	Yes (1)
SSF	69] · – '	Yes (2)
SSF	71	Yes	Yes (2)
SSF	WIW2] –	-
SSF	WIW4] –	-
SSF	WIW7	1 –	CONFIDENTIAL

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

•

. •

•

CA1069588

Table 10 – 1 Prioritized Ranking of Recommended Actions for Assessed Well Sites

	essed	Further	Remediation (b)
	Site	Assessment (a)	
SSF	A1	Yes	Yes (1)
SSF	A7	Yes	Yes (2)
SSF	A9	-	-
SSF	A10	-	Yes (2)
SSF	A13	Yes	Yes (1)
SSF	B15	Yes	Yes (2)
SSF	B16	Yes	-
SSF	A20	Yes	-
SSF	A22B	Yes	-
SSF	A24	Yes	Yes (1)
SSF	A26	-	Yes (2)
SSF	A30	Yes	Yes (1)
SSF	<u>B31</u>	Yes	Yes (2)
SSF	A33	Yes	Yes (1)
SSF	A34	-	-
SSF	B36	Yes	Yes (1)
SSF	A38	Yes	Yes (1)
SSF	A43	Yes	Yes (1)
SSF	6B	Yes	Yes (1)
SSF	A45	Yes	Yes (2)
SSF	A45B	Yes	-
SSF	46	Yes	Yes (2)
SSF	B49	Yes	Yes (2)
SSF	A50	-	-
SSF	B 51	Yes	Yes (1)
SSF	B52	Yes	Yes (2)
SSF	B55	Yes	Yes (1)
SA	WIW1	-	Yes (2)
SA	WIW2	Yes	Yes (1)
SA	WIW3	-	-
SA	WIW4	Yes	-
SA	WIW5	Yes	Yes (1)
SA	WIW6	Yes	-
SA	1	Yes	Yes (2)
SA	2	-	-
SA	8	Yes	Yes (1)
SA	9	-	Yes (2)
SA	11	Yes	Yes (2)
SA	12	Yes	Yes (1)
SA	13	-	
SA	16	Yes	Yes (1)
SA	18	Yes	Yes (1)
SA	19	Yes	Yes (1)
SA	20	Yes	Yes (1)
SA	21	Yes	Yes (2)
SA	25	Yes	Yes (1)
SA	27	Yes	Yes (2)

CONFIDENTIAL PET 040842

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

,

Bi

d

1

CA1069589

Table 10 – 1 Prioritized Ranking of Recommended Actions for Assessed Well Sites

Assessed Site		Further Assessment (a)	Remediation (b)
SA	28	Yes	Yes; (2)
SA	32	Yes	
SA	33	Yes	Yes (2)
SA	34	Yes	Yes (2)
SA	35	_	
SA	36	Yes	-
SA	43	Yes	Yes (2)
SA	44	Yes	-
SA	46	Yes	Yes; (1)
SA	54	Yes	
SA	55	Yes	Yesi (2)
SA	56	-	-
SA	58	Yes	Yes (1)
SA	59	Yes	Yes (2)
SA	60	Yes	Yes (2)
SA	72	Yes	Yes (2)
SA	73	-	-
SA	74	Yes	Yes (2)
SA	75	Yes	Yes (2)
SA	7	Yes	Yes (2)
SA	78	Yes	Yes (1)
SA	81	Yes	-
SA	84	-	-
SA	85	Yes	Yes (1)
SA	86	Yes	-
SA	91	Yes	-
SA	93	Yes	Yes (1)
SA	94	Yes	Yes (2)
SA	95	Yes	Yes (2)
SA	97	Yes	Yes (1)
SA	100	Yes	Yes (2)
SA	103	Yes	Yes (1)
SA	104	Yes	Yes (2)
SA	107	Yes	Yes (1)
SA SA	109	Yes	Yes (2)
	110	- V	
SA SA	111	Yes Yes	Yes (2)
	113	Yes	Yes (2)
CU YB	2	Yes	Yes (2)
	2	Yes	Yes (2)
YU YU	4 6		
		_ 	
YU	5	Yes	Yes (2)
YU	12	Yes	Yes (2)
YUS		-	Yes (2)
AU		Yes	Yes (1)
AU	4	Yes	Yes (2) CONFIDENTIAL

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table 10 – 1 Prioritized Ranking of Recommended Actions for Assessed Well Sites

	Assessed Further Site Assessment (a)		Remediation (b)
AU	6	Yes	_
AU	7	Yes	Yes (2)
AU	9	Yes	-
AU	11	Yes	·Yes (1)
AU	12	Yes	Yes (1)
AU	15	Yes	Yes (2)
AU	16	Yes	Yes (2)
AU	17	Yes	Yes (2)
AU	18	-	
AU	19B	Yes	Yes (2)
AU	21	Yes	Yes (2)
AU	24	Yes	Yes (1)
AUS	1	-	Yes (2)
RM	1	Yes	-
CN	1	Yes	Yes (1)
CN	2	Yes	Yes (1)
CN	3] –	-
CN	8] –	-
CN	11	Yes	-
CN	12	Yes	-
DU	1	1 –	-

(a) Further assessment is recommended at sites which have been rated as having 'medium' or 'high' contaminant impact. The extent of contamination may require further definition at these well sites prior to implementation of remediation.

(b)

1

4

3

!

- 44

The priority for remediation has been identified as 1 if the environmental risk potential has been rated as "high" or 2 if the environmental risk potential has been rated as "medium". A description of remediation methods is given in the Environmental Management Plan (Volume II).

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

e sak zrižev		Further	· .
Station	Spill Source	Assessment (a)	Remediation (b)
Lago Agrio	Separator	-	Yes (2)
Central	Wash Tank	-	Yes (2)
	Surge Tank	-	Yes (2)
	Chemical Tank	-	Yes (2)
	Fuel Tank (Diesel)	-	Yes (2)
	Fuel Tank (Gas)	-	Yes (2)
	Fuel Tank (Jet)	-	Yes (2)
	Pump/Compressor	-	Yes (2)
	Lined Sump	-	Yes (2)
	Vehicle Maintenance	Yes	Yes (2)
	Flare Stack	-	Yes (2)
	Waste Pit	Yes	Yes (1)
	Separation Pits	Yes	Yes (1)
Lago Agrio	Separator	-	Yes (2)
North	Surge Tank	-	Yes (2)
	Wash Tank	– '	Yes (2)
	Pump/Compressor	-	Yes (2)
	Flare Stack	-	Yes (2)
	Separation Pits	Yes	Yes (1)
Parahuacu	Well Site	Yes	Yes (2)
	Surge Tank	-	Yes (2)
	Separator	-	Yes (2)
	Pump/Compressor	-	Yes (2)
	Flare Line	Yes	Yes(1)
	Flare Stack	-	Yes (2)
	Separation Pits	Yes	Yes (1)
Atacapi	Separator		Yes (2)
•	Separation Pits	Yes	Yes (1)
Guanta	Wash Tank	Yes	Yes (1)
	Fuel Tank (Diesel)	_	Yes (2)
	Pump/Compressor	Yes	Yes (1)
	Flare Line	Yes	Yes (1)
	Flare Stack	-	Yes (2)
	Separation Pits	Yes	Yes (1)
Aguarico	Separator		
guanov	Wash Tank	- Yes	- Vec / 2 \
	•	185	Yes (2)
	Surge Tank	-	
	Lined Sump	Yes	Yes (2)
	Flare Stack N.	Yes	-
	Flare Stack S.	183	Yes (2)
	Pit	Yes	Yes (2)

Table 10 – 2 pritized Ranking of Recommended Actions for Production Stati

PET 040845

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069592

CA1069592

Ţ

 Table 10 – 2

 Prioritized Ranking of Recommended Actions for Production Stations

		Further	
Station	Spill Source	Assessment (a)	Remediation (b)
Shushufindi	Separator	Yes	Yes (1)
Central	Vehicle Maintenance	Yes	
oondu	Wash Tank	-	Yes(1) Yes(2)
	Surge Tank	_	
	Chemical Tank	Yes	Yes (2) Yes (1)
	Fuel Tank (Diesel)	Yes	Yes (1)
	Fuel Tank (Diesel)	Yes	Yes (1)
	Fuel Tank (Jet)	Yes	Yes (1)
	Pump/Compressor	Yes	Yes (1)
	Flare Stack	_	Yes (2)
	Separation Pits	Yes	Yes (1)
Shushufindi			
North	Wash Tank	Yes	Yes (1)
	Surge Tank	Yes	Yes (1)
	Chemical Tank	Yes	Yes (1)
	Pump/Compressor	Yes	Yes (1)
	Gas Vent	Yes	Yes (1)
	Flare Stack	Yes	Yes (1)
	Separation Pits	Yes	Yes (1)
Shushufindi	Pipeline	-	-
South	Separator	-	-
	Wash Tank	-	-
	Surge Tank	-	-
	Pump/Compressor	Yes	Yes (2)
	Lined Sump	Yes	Yes (2)
	Flare Stack	_	-
	Separation Pits	Yes	Yes (2)
Shushufindi	Separator	_	Yes (2)
Southwest	Wash Tank	Yes	Yes (1)
	Chemical Tank	Yes	Yes (1)
	Fuel Tank (Diesel)	-	Yes (2)
	Pump/Compressor	-	Yes (2)
	Lined Sump	Yes	Yes (1)
	Flare Stack	-	Yes (2)
	Off-Site Waste Pit	Yes	Yes (1)
	Separation Pits	Yes	Yes (1)
Shushufindi	Pump/Compressor	Yes	Yes (1)
Vater Inj.	•••••		Yes (1)

CONFIDENTIAL PET 040846

CA1069593

		Further	_
Station	Spill Source	Assessment (a)	Remediation (b)
Sacha	Vehicle Maintenance	_	Yes⊨(2)
Central	Separator	-	Yes (2)
	Wash Tanks (2)	Yes	Yes (2)
	Surge Tank	Yes	Yes (1)
	Chemical Storage	Yes	Yes (1)
	Fuel Tank (Diesel)	-	Yes (2)
	Fuel Tank (Diesel)	Yes	Yes (2)
	Pump/Compressor	-	Yes (2)
	Flare Stack	- ·	Yes (2)
	Separation Pits	Yes	Yes (1)
Sacha	Separator	-	Yes (2)
North # 1	Wash Tank	-	Yes (2)
	Fuel Tank (Diesel)	-	Yes (2)
	Flare Stack	-	Yes (2)
	Separation Pits	Yes	Yes (1)
acha	Separator	-	Yes (2)
North # 2	Wash Tank	-	Yes (2)
	Surge Tank	-	Yes (2)
	Pump/Compressor	-	Yes (2)
	Flare Stack	-	Yes (2)
	Separation Pits	Yes	Yes (1)
lacha	Separator	-	Yes (2)
South	Wash Tank	Yes	Yes (1)
	Surge Tank	Yes	Yes (1)
	Pump/Compressor	-	Yes (2)
	Flare Stack	-	Yes (2)
	Separation Pits	Yes	Yes (1)
Culebra	Pipeline	-	Yes (2)
	Wash Tank	-	Yes (2)
	Fuel Tank (Diesel)	-	Yes (2)
	Pump/Compressor	-	Yes (2)
·	Former Pit	-	Yes (2)
lebra	Wash Tank		Yes (2)
	Fuel Tank (Diesel)	-	Yes (2)
	Pump/Compressor	Yes	Yes (2)
	Lined Sump	-	Yes (2)
	Flare Stack	· ~	Yes (2)
	Pit	Yes	Y08 (1)

CONFIDENTIAL PET 040847

CA1069594

CA1069594

 Table 10 – 2

 Prioritized Ranking of Recommended Actions for Production Stations

		Further	
Station	Spill Source	Assessment (a)	Remediation (b)
Yuca	Separator	-	-
	Wash Tank	-	-
	Surge Tank	-	-
	Chemical Tank	-	-
	Fuei Tank (Diesel)	-	-
	Fuel Tank (Jet)	-	-
	Pump/Compressor	-	-
	Lined Sump	Yes	Yes (2)
	Flare Stack	- -	- .
	Separation Pits	Yes	Yes (2)
Auca	Vehicle Maintenance	Yes	Yes (1)
Central	Separator	-	Yes (2)
	Fuel Tank (Diesel)	-	Yes (2)
	Pump/Compressor	-	Yes (2)
	Generator	-	Yes (2)
	Sumps	Yes	Yes (1)
	Flare Stack	. –	Yes (2)
	Separation Pits	Yes	Yes (1)
Auca	Pipeline	-	_
South	Separator	Yes	Yes (2)
	Wash Tank	Yes	Yes (2)
	Pump/Compressor	Yes	Yes (2)
	Generator	-	-
	Flare Stack	-	-
	Separation Pits	Yes	Yes (2)
Auca Sur	Fuel Tank (Diesel)	Yes	Yes (1)
	Pump/Compressor	Yes	Yes (1)
	Generator	Yes	Yes (1)
	Pit	Yes	Yes (1)
Cononaco	Lined Sump	Yes	Yes (2)
	Flare Stack	_	Yes (2)
	Separation Pit	Yes	Yes (1)
Dureno	Surge Tank		Yes (2)
	Lined Sump	-	Yes (2)
	Flare Stack	-	Yes (2)
	I IGIG GLECK	- Yes	Yes (1)

at these well sites prior to implementation of remediation.

(b) The priority for remediation has been identified as 1 if the environmental risk potential has been rated as "high" or 2 if the environmental risk potential has been rated as "medium". A description of remediation methods is given in the Environmental Management Plan (Volume II).

CONFIDENTIAL PET 040848

3

I

.

Well Site Pits

- Pits should be monitored on a regular basis to ensure that there is sufficient free board, to ensure siphons are working correctly and to document any evidence of seepage and soils outside the pits.
- A large number of pits have been closed. Improper closure at some sites has resulted in contamination of soil and often unstable surfaces. It is recommended that all well site pits be properly remediated and closed as soon as is practically possible.

Solid Waste

• Solid waste (primarily domestic garbage) found at numerous well sites should be assessed and cleaned up.

10.1.2 Production Station Assessment Recommendations

Contamination of soil at production stations was usually associated with one or more of the following: used oil discharge to sumps or drains which ultimately discharge to off-site areas, process area spills, flare system failures/spills, tank related spills, disposal of tank bottoms, subsurface contaminant migration from separation pits, direct discharge to the environment of oily produced water, and fuel and chemical spills.

The following are specific recommendations arising from the production station assessments:

- Most of the production station pits are currently in use. Those that are not in use should be properly closed. Those that are currently in use should be phased out and ultimately closed. This will necessitate the prior implementation of other means of produced water disposal (e.g., deep well injection).
- Used oil recycling programs should be implemented and the practice of directly discharging these wastes to the environment should be discontinued.
- Flare systems should be upgraded and properly maintained.
- Further assessment is required to more accurately define the extent of contamination below produced water discharge areas at the production stations, and at other spill sites (Table 10-2).

PART-10.VI

CA1069596

CONFIDENTIAL PET 040849

10.2 CONCLUSIONS AND RECOMMENDATIONS FROM FACILITY AUDIT

The following are specific recommendations arising from the facility audit.

<u>Air Emissions</u>

- An air quality monitoring program should be established for the incinerator at Lago Agrio.
- An air quality monitoring program should be introduced for the flare stacks that is in conformance with Ecuadorian regulatory requirements.

Water/Waste Water Discharge

• Effluent from septic tanks should be tested prior to discharge.

Waste Handling. Storage. Transportation and Disposal

- A waste management program should be introduced which includes the following elements:
 - designation of personnel responsible for waste management
 - assessment of wastes for potential minimization, reuse or recycling
 - periodic audit of operations to determine methods to minimize or eliminate wastes
 - a waste recording system to monitor progress with waste minimization
- A hazardous materials inventory list should be made at each production station.
- A Workplace Hazardous Material Information System (WHMIS) should be introduced for all hazardous chemicals and substances. This should include proper chemical labelling, and material safety data sheets containing information on safe use and disposal.

Use/Disposal of Produced Gas

• A knockout tank system to remove fluids from flare lines should be installed at the production stations to minimize sprays and reduce the fire hazard.

Containment and Control of Crude Oil Spills

• A spill contingency plan should be developed for all facilities. Training programs should be conducted and response capabilities should be tested by means of mock drills.

PART-10.VI

10-11

CONFIDENTIAL PET 040850

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Noise

• A noise monitoring program should be introduced that is in conformance with regulatory requirements.

Disposal of Produced Water

- Produced water should be tested on a regular basis prior to discharge.
- The feasibility of disposal of produced water by deep well injection or other means should be evaluated for all Concession oil fields.

Disposal of Tank Bottoms and Residual Oil

- Tank bottoms and residual oil should be sampled and analyzed prior to disposal.
- Disposal of tank bottoms and residual oil onto roads should only be undertaken where these wastes meet appropriate disposal criteria (see Appendix I for example of disposal criteria).
- Disposal should only be done when roads are dry, at a specified application rate (see Appendix I) and where there is no possibility of direct runoff to creeks and streams.
- Alternate disposal methods for tank bottoms and residual oil should be investigated.

Well Site Management

- The practice of burying drilling sumps without assessment, treatment and remediation should be discontinued.
- Well site inspection programs should be undertaken on a regular basis.
- Erosion control measures need to be implemented at some well sites.
- A waste management program needs to be introduced.

Pipeline Management

- A pipeline inspection program using standard reporting procedures should be undertaken on a regular basis.
- Priority risk areas based on land use and sensitivity of receptors (i.e., stream crossings) need to be identified and protection measures implemented.

PART-10.V1

CONFIDENTIA PFT 040851

PART 11 - CLOSURE

- The services performed and outlined herein were based in part, upon visual observations of the sites and attendant structures. Our opinion cannot be extended to portions of the site which were unavailable for direct observations at the time of our observations.
- Our observations relating to hazardous and toxic materials in the environment at the site are described in this report. Where testing was performed, it was executed in accordance with our contract for these services. The testing and analyses of only those compounds or materials specified in our contract for services was performed.
- The conclusions presented herein are based solely upon the scope of services described in our contract and the time and budgetary constraints imposed by the contract.
- The site history research performed herein relies on information supplied by others. No attempt has been made to independently verify the accuracy of such information, unless specifically noted in our report.
- The conclusions of this report are based, in part, on the information provided by others and any testing and analyses described in the report. The possibility remains that unexpected environmental conditions may be encountered at locations not explored. Should such an event occur, HBT AGRA should be notified in order that we may determine if modifications to our conclusions are necessary.
- This report has been prepared in accordance with generally accepted environmental study and/or engineering practices. No other warranties, either expressed or implied, are made as to the professional services provided under the terms of our contract and included in this report.

CONFIDENTIAL PET 040852

AGRA Earth & Environmental Group

PART-11.V1

CA1069599

APPENDIX A

SUMMARY OF PRE-ASSESSMENT FINDINGS

.

CONFIDENTIAL PET 040853

....

AGRA Earth & Environmental Group

_....

CA1069600

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

.

ě

l i

Ì

Table A - 1

Summary of Pre-Assessment Findings - Production Data

	Identification						Des	cnp		f Pro	duct	ion Stations and W	ell Sites	
	Field	Well			N	liles	tone	Date	s			Cur	nulative Production	י י
	Number	Status		Spuc	1	Con	nplet	ion	Pro	ducti	on	Oil	Gas	Water
			MM	DD	YY	MM	DD	1	MM	DD	Υ٢	Barrels	Cubic Feet	Barreis
	Producing =	P		,		DI	ا باھ	• • ••						
	Abandoned = Water Inj. =	- <u>A</u>					ank i Isum			able			* to June 10, 1990	
	water ing		J	1	ليسب									
La	go Agrio													
ſ	Estacion Central													
	Estacion Norte													
	1	Р	2	16	67	4	8	67	5		72	8,360,166	2.180.255	3,840
	2	P	5	17	67	6	30	67	5		72	5,085,269	866, 866	1,595
	3	Р	10	1	67	11	15	67	9		72	1,292,776	206,306	625
	4	P	1	5	68	2	17	68	9		72	1,441,668	281,909	3,03
	5	P	2	8	70	3	21	70	9		72	10,689	1,433	
	6	Р	3	23	70	5	1	70	5		72	11,325,853	1,883,694	4,77
[7	A	1	30	70	3	19	70	6		72	2,000,322	343,792	34
[8	Ρ	3	14	70	5	16	70	5		72	3,489,293	562,257	21
[9	P	3	28	70	6	3	70	5		72	903,243	54,438	20
	98	P	2	21	76	3	26	78	2		82	404,110	17,163	12
	10	P	6	23	70	7	23	70	5		72	2,089,158	311,817	44
ļ	118	P	4	12	76	5	10	76	6		76	4,978,739	3,400,645	95
	12	P	7	25	70	8	25	70	5		72	8,261,657	1,796,574	6,79
	13	P	8	7	70	9	9	70	10		72	2,436,072	398,695	810
	14	P	5	19	70	6	21	70	6		72	1,613,970	279,916	50
	15	P	7	19	70	8	5	70	5		72	1,101,314	215,865	26
	16	<u>A</u>	8	27	70	9	24	70	5		72	950,285	136,490	
	168	P	7	16	85	9	26	85	10		85	502,743	85,704	393
	17	P	9	14	70	10	12	70	5		72	2,869,618	66,983	3,12
	18	P	9	27	70	10	29	70	5		72	15,855,338	3,133,006	12,89
	19	A	11	2	70	12	4	70						
	20	P	12	26	70	2	2	71	6		72	685,526	92,266	17
	21	<u>P</u>	10	16	70	11	15	70	5		72	2,423,746	446,792	57
-	22	P	11	18	70	12	2	70	5		72	2,903,060	740,559	76
ł	23	<u>Р</u>	1	10	71	2	26	71	5		72	5,418,192	1,332,204	6,30
ł	24	P	12	7	70	1	7	71	5		72	12,269,350	2,946,448	7,76
	25	<u> </u>	2	3	71	3	2	71	6		72	683,480	228,106	1
	26	Р 	6	23	73	7	<u> </u>	73	7		73 77	6,059,025	972,606	1,04
}	<u>27</u> 28		7	15	77	8	13	77	8		79	1,386,233	317,628 38,542	32
}	29	P	2	28 2	79 81	2 10	26 14	79 81	3		83	145,047 954,126	399,349	1,28
	30	P	1	15	82	2	12	82	2		82	2,017,914	666,771	52
	31	P	2	15	82	3	11	82	3		82	333,068	119,926	
	32	P	1	31	83	2	21	83	3		83	1,501,262	239,456	6
ļ	33	P	2	27	82	8	10	82	8		82	3,796,366	345,778	4
	34	P	8	11	80	9	16	80	12		86	777,248	113,456	7
ľ	35	P	12	4	87	12		87	2		92	120,129	16,901	17
			<u> </u>	<u> </u>				<u> </u>	ـ_ ــــ	·	ليترز			
Count	37											36	36	
ercent	11.4					Field	Prod	uction	I			116,646,055	25,240,386	60,83
						Conc	oissio	n per	centa	ge		8.5	10.1	
													CONFIDE PET 04(NTIAL 1854

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

84

3

],

1

li

4

j.

AL

÷

CA1069601

Table A - 1 Summary of Pre-Assessment Findings - Production Data

- ---

Field						Des	cnpt			duct	ion Stations and We	ell Sites	
	Well			N	lilest	lone	Date	S		T	Сип	nulative Production	*
Number	Status		Spuc		-	npiet	_		ducti		Oil	Gas	Water
		MM	DD	ŶŶ	MM	DD	YY	MM	DD	1	Barrels	Cubic Feet	Barrels
Producing = Abandoned =		4	1		.		f		lable			t to lung 10, 1000	
Water Inj. =		┥					ed d					* to June 10, 1990	
	1	-											
Parahuacu	J												
Estacion	1												
1	P	10	4	68	11	17	68	12		78	3,838,958	765,967	9,288
2	Р	4	11	78	5	21	78	12		80	1,021,944	19,504	85,162
3	Р	7	23	7B	9	1	78	12		78	617,600	148,398	8,468
4	Р	10	20	78	11	22	78	12		78	503,116	98,942	9,819
5	P	7	23	79	10	න	79	7		80	1,011,733	358,752	19,772
ount 5	1									٢	5	5	
	4				Field	D al.	حماضه			H	+		5
ercent 1.5	1										6,993,351	1,391,963	132,509
Atacapi	٦				Cona		n pen		94	L	0.5	0.01	0.0
	ر -												
Estacion	<u> </u>								•				
1	Р	2	6	68	9	20	68	12		78	4,813,977	559,364	1,289,940
2	Р	5	28	78	6	8	78	1		79	3,121,640	8,049,448	1,283,404
3	Р	9	12	78	10	13	78	12		78	418,949	225,700	7,881
4	Р	3	6	79	3	24	79	7		80	4,311,137	767,171	1,007,753
5	Р	4	3	79	4	22	79	2		81	289, 783	63,196	11,334
6	P	11	7	81	11	22	81						
	7									ſ			
Count 6	4										5	5	5
ercent 1.8	- L				Field					 	12,955,486	9,664,879	3,600,312
0	า				Cono	essio	n per	penta	ge -	Į	0.9	3.9	1.0
Guanta	1												
Estacion Guenta	1							1					
1	P	12	15	85	2	11	86	3		86	1,199,081	163,738	15.007
2	P	5	_	86	6	17	86	7	_	86	1,357,718	289,213	8,052
3	ρ	9	19		10	12	86	11		86	859,703	146,854	55,423
4	P	12	3	86	<u> </u>		86	1		87	1,051,798	152,812	112,681
5	P	1	5		2		87	8	+	87	1,077,603	126,611	5,826
6	P	2	12	87	3		87	8	+	67 67	703, 573	117,067	3,766
7	р Р	3	19	87	4	14	87	8		67 67	981,042	107,089	125,35
8	P	3	29	87	5	18	87		<u>+</u>	87 87	886,764	82,368	197,050
	P	10	29		11	18	87	9 12		87 87	483,527	111,054	2,690
) a			<u> </u>		<u> </u>			L_12	L	_•′_	703,327		
9										1	9	9	
Count S]												
	-				Field	Prod	uction	1			8,600,809	1,296,806	525,84

CA1069602

- --

-

Table A - 1

.

Summary of Pre-Assessment Findings - Production Data

	Identification				···,-		Des			f Prod	ucti	on Stations and W	ell Sites	
	Field	Well			N	Ailest	one	Date	s		T	Cur	nulative Production	•
	Number	Status		Spuc		Соп	nplet	ion	Pro	ductia		Oil	Gas	Water
				DD		MM	DD	ŶŶ			_	Barreis	Cubic Feet	Barreis
	Producing =	Р												
	Abandoned =	Α							avail	able			* to June 10, 1990	
	Water Inj. =	W	J	1		AS	sum	ed d	ate					
A	guarico													
Í	Estacion													
	AG1	Р	3	4	69	4	_1	69	2		74	11,695,699	3,133,783	931,47
	AG2	Р	7	18	70	8	8	70	2		74	1,806,721	669, 284	866,15
	Ag3	Ρ	7	30	73	8	25	73	12		75	5,529,412	1,374,369	1,244,6
	AG4	Ρ	6	25	74	7	19	74	10		75	730,071	173,898	73,7
	AGS	Ρ	9	24	73	10	9	73	2		74	7,641,120	1,724,618	694,2
	AG6	Ρ	3	2	74	3	18	74	4		74	429,756	92,761	3,4
ļ	AG7	Ρ	8	11	73	8	28	73	1		74	1,787,314	452,745	497, 3
	AG8	Р	8	30	73	9	14	73	1		74	1,382,050	390,135	526, 5
	AG9	P	2	21	74	3	2	74	4		74	8,315,760	2,096,544	1,878,1
	AG10	P	1	22	80	2	7	80	8		80	7,279,359	1,543,597	2,469,3
		1									r			
ount	10										F	10	10	·
cent	3.1					Field	Produ	uction	1			46,597,262	11,651,734	9,185,0
Sh	ushufindi					Conci	988iO	n per	centa;	90	Ľ	3.4	4.7	2
Sh	Estacion Norte Estacion					Cono	853 10		centa;	90	٢	3.4	4.7	2
Sh	Estacion Norte					Conci			centa	9•	Ľ	3.4	4.7	2
Sh	Estacion Norte Estacion					Conc			centa	90	Ľ	3.4	4.7	2
Sh	Estacion Norte Estacion Estacion Sur-O	ρ	6	7	77	Conc	21	77	centa 7	-	77	3.4	4.7	
Sh	Estacion Norte Estacion Estacion Sur –O Estacion Central	P	6	7							77			1,454,1
Sh	Estacion Norte Estacion Estacion Sur –O Estacion Central B56				77	6	21	77	7		+-	7,529,057	1,742,551	1,454,1
Sh	Estacion Norte Estacion Estacion Sur-O Estacion Central B56 B57	Р	8	24	77 75	6	21	77 75	7		75	7,529,057 7,342,327	1,742,551 1,596,287	1,454,1 1,062,5 1,225,0
Sh	Estacion Norte Estacion Estacion Sur-O Estacion Central B56 B57 B59	P	8	24 5	77 75 75	6 9 11	21 26 29	77 75 75	7 11 2		75 78	7,529,067 7,342,327 7,846,930	1,742,551 1,596,287 1,756,877	1,454,1 1,062,5 1,225,0 3,573,8
Sh	Estacion Norte Estacion Estacion Sur-O Estacion Central B56 B57 B59 61	P P P	8 11 10	24 5 22	77 75 75 77	6 9 11 11	21 26 29 5	77 75 75 77	7 11 2 11		75 78 77	7,529,057 7,342,327 7,846,930 8,700,160	1,742,551 1,596,287 1,756,877 2,013,210	1,454,1 1,062,5 1,225,0 3,573,8 410,2
Sh	Estacion Norte Estacion Estacion Sur-O Estacion Central B56 B57 B59 61 B62	P P P	8 11 10 2	24 5 22 25	77 75 75 77 85	6 9 11 11 3	21 28 29 5	77 75 75 77 85	7 11 2 11 4		75 76 77 85	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367	1,742,551 1,596,287 1,756,877 2,013,210 825,616	1,454,1 1,062,5 1,225,0 3,573,8 410,2 34,7
Sh	Estacion Norte Estacion Estacion Sur-O Estacion Central B56 B57 B59 61 B62 B63	P P P P	8 11 10 2 6	24 5 22 25 28	77 75 75 77 85 85	6 9 11 11 3 7	21 28 29 5 25 19	77 75 75 77 85 85	7 11 2 11 4 8		75 76 77 85 85	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641	1,454,1 1,062,5 1,225,0 3,573,8 410,2 34,7 316,8
Sh	Estacion Norte Estacion Estacion Sur – O Estacion Central B56 B57 B59 61 B62 B63 B64	P P P P P	8 11 10 2 6 11	24 5 22 25 28 18	77 75 75 75 85 85 85	6 9 11 11 3 7 12	21 25 29 5 25 19 16	77 75 75 75 85 85	7 11 2 11 4 8 1		75 76 77 85 85 85	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077	1,454,1 1,062,5 1,225,0 3,573,8 410,2 34,7 316,8 1,193,7
Sh	Estacion Norte Estacion Estacion Sur – O Estacion Central B56 B57 B59 61 B62 B63 B64 A65	P P P P P P P	8 11 10 2 6 11 7	24 5 22 25 28 18 28	77 75 75 75 85 85 85 85	6 9 11 11 11 3 7 12 8	21 28 29 5 25 25 19 16 20	777 755 775 855 855 855	7 11 2 11 4 8 1 9		75 76 77 85 85 85 86 85	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436 4,410,808	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720	1,454,1, 1,062,5 1,225,0 3,573,8 410,2 34,7; 316,8 1,193,7 5,0
Sh	Estacion Norte Estacion Estacion Sur – O Estacion Central B56 B57 B59 61 B62 B63 B64 A65 B66	P P P P P P P P	8 11 10 2 6 11 7 12	24 5 22 25 28 18 28 31	77 75 75 85 85 85 85 85 85	6 9 11 11 11 3 7 12 8 8 2	21 25 29 5 25 25 19 16 20 6	777 755 775 855 855 855 855 855 855	7 11 2 11 4 8 1 9 3		75 76 77 85 85 85 85 85 86 85 86	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,438 4,410,808 1,299,128	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021	1,454,1 1,062,5 1,225,0 3,573,8 410,2 34,7 316,8 1,193,7 5,0 178,5
Sh	Estacion Norte Estacion Estacion Sur – O Estacion Central B56 B57 B59 61 B62 B63 B64 A65 B66 A67	P P P P P P P P P P	8 11 10 2 6 11 7 12 6	24 5 22 25 28 18 28 31 21	777 755 775 855 855 855 855 855 855 855	6 99 11 11 11 3 7 12 8 8 2 7	21 26 29 5 25 25 19 16 20 8 9	777 755 775 855 855 855 855 855 855 855	7 11 2 11 4 8 1 9 3 3 8		75 78 77 85 85 85 86 85 86 86 86 86	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,438 4,410,808 1,299,128 3,754,762	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021 1,147,107	1,454,13 1,062,53 1,225,02 3,573,82 410,22 34,73 316,8 1,193,77 5,03 176,5 54,8
Sh	Estacion Norte Estacion Estacion Sur – O Estacion Central B56 B57 B59 61 B62 B63 B64 A65 B66 A67 68	P P P P P P P P	8 11 10 2 6 11 7 12 6 5	24 5 22 25 28 18 28 31 21 18	777 775 775 855 855 855 855 855 855 856 868	6 99 11 11 11 3 7 12 8 2 7 6	21 26 29 5 25 19 18 20 6 9 25	777 775 775 855 855 855 855 856 866 886 886	7 11 2 11 4 8 1 9 3 3 8 7		75 76 77 85 85 85 85 85 86 85 86 86 88 88	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436 4,410,808 1,299,128 3,754,762 1,314,113	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021 1,147,107 573,321	1,454,13 1,062,53 1,225,02 3,573,82 410,22 34,73 316,8 1,193,77 5,03 176,5 54,8
Sh	Estacion Norte Estacion Estacion Sur – O Estacion Central B56 B57 B59 61 B62 B63 B64 A65 B66 A67 68 69	P P P P P P P P P P	8 11 10 2 6 11 7 12 6 5 5 6	24 5 22 25 28 18 28 31 21 18 27	777 755 775 855 855 855 855 855 855 855	6 9 111 111 3 7 122 8 2 7 6 6 7	21 28 29 5 25 19 16 20 6 9 25 16	777 755 755 777 855 855 855 855 855 856 866 888 888 888	7 111 2 11 4 8 1 9 9 3 8 8 7 8		75 76 77 85 85 85 85 86 88 88 88 88	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436 4,410,808 1,299,128 3,754,762 1,314,113	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021 1,147,107 573,321	1,454,13 1,062,53 1,225,02 3,573,82 410,22 34,73 316,8 1,193,77 5,03 176,5 54,8
Sh	Estacion Norte Estacion Estacion Sur – O Estacion Central B56 B57 B59 61 B62 B63 B64 A65 B66 A67 68 69 70	P P P P P P P P P P P P P	8 11 10 2 6 11 7 12 6 5 5 6 5 5	24 5 22 25 28 18 28 31 21 18 27 17	777 755 775 855 855 855 855 855 856 858 858 858 85	6 9 11 11 11 3 7 12 8 2 7 7 6 7 7 14	21 28 29 5 25 25 25 25 19 18 20 8 9 25 16 8	77 75 75 85 85 85 85 85 85 85 86 88 88 88 88 88 88 88 88 88 88 88 88	7 111 2 11 4 8 1 9 9 3 8 8 7 7 8 7		75 76 77 85 85 85 85 86 86 88 88 88 88 90	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436 4,410,808 1,299,128 3,754,762 1,314,113	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021 1,147,107 573,321	1,454,1 1,062,5 1,225,0 3,573,8 410,2 34,7 316,8 1,193,7 5,0 176,5 54,8
Sh	Estacion Norte Estacion Estacion Sur-O Estacion Central B56 B57 B59 61 B62 B63 B64 A65 B66 A65 68 69 70 71	P P P P P P P P P P P P P P	8 11 10 2 6 11 7 12 6 5 5 6 5 5 11	24 5 22 25 28 18 28 31 21 18 27 17 23	777 755 775 855 855 855 855 855 855 855	6 9 11 11 11 3 7 7 12 8 8 2 7 7 6 6 7 14 12	21 26 29 5 25 19 16 20 6 9 25 16 8 16	777 775 775 855 855 855 855 855 856 866 888 888 88	7 111 2 11 4 8 1 9 9 3 8 8 7 7 8 7		75 76 77 85 85 85 85 86 86 88 88 88 88 90	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436 4,410,808 1,299,128 3,754,762 1,314,113	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021 1,147,107 573,321	1,454,1 1,062,5 1,225,0 3,573,8 410,2 34,7 316,8 1,193,7 5,0 176,5 54,8
Sh	Estacion Norte Estacion Estacion Sur-O Estacion Central B56 B57 B59 61 B62 B63 B64 A65 B66 A67 68 69 70 71 WW1	P P P P P P P P P P P P P P P P P P P	8 11 10 2 6 11 7 12 6 5 5 6 5 5 11 5	24 5 22 25 28 18 28 31 21 18 27 17 23 6	777 755 775 855 855 855 855 855 855 855	6 9 11 11 3 7 7 12 8 2 7 7 6 7 7 14 12 5	21 26 29 5 25 19 16 20 6 9 25 16 8 6 9 25 16 8 16 27	777 775 775 855 855 855 855 855 855 856 856 856 85	7 111 2 11 4 8 1 9 9 3 8 8 7 7 8 7		75 76 77 85 85 85 85 86 86 88 88 88 88 90	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436 4,410,808 1,299,128 3,754,762 1,314,113	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021 1,147,107 573,321	1,454,1 1,062,5 1,225,0 3,573,8 410,2 34,7 316,8 1,193,7 5,0 176,5 54,8
Sh	Estacion Norte Estacion Estacion Sur – O Estacion Central B56 B57 B59 61 B62 B63 B64 A65 B66 A67 68 69 70 71 WIW1 WIW2	P P <td>8 11 10 2 6 11 7 7 12 6 5 5 6 5 5 11 5 5 6</td> <td>24 5 22 25 28 18 28 31 21 18 27 77 7 23 6 1</td> <td>777 755 775 855 855 855 855 855 855 855</td> <td>6 9 11 11 11 3 7 12 8 2 7 6 7 7 6 7 7 14 12 5 6</td> <td>21 26 29 5 25 19 16 20 6 9 25 16 8 16 27 23</td> <td>777 775 775 855 855 855 855 855 855 855</td> <td>7 111 2 11 4 8 1 9 9 3 8 8 7 7 8 7</td> <td></td> <td>75 76 77 85 85 85 85 86 86 88 88 88 88 90</td> <td>7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436 4,410,808 1,299,128 3,754,762 1,314,113</td> <td>1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021 1,147,107 573,321</td> <td>2 1,454,13 1,062,53 1,225,02 3,573,88 410,22 34,77 316,8 1,193,77 5,02 176,5 5,4,8 471,6</td>	8 11 10 2 6 11 7 7 12 6 5 5 6 5 5 11 5 5 6	24 5 22 25 28 18 28 31 21 18 27 77 7 23 6 1	777 755 775 855 855 855 855 855 855 855	6 9 11 11 11 3 7 12 8 2 7 6 7 7 6 7 7 14 12 5 6	21 26 29 5 25 19 16 20 6 9 25 16 8 16 27 23	777 775 775 855 855 855 855 855 855 855	7 111 2 11 4 8 1 9 9 3 8 8 7 7 8 7		75 76 77 85 85 85 85 86 86 88 88 88 88 90	7,529,057 7,342,327 7,846,930 8,700,160 3,641,367 4,460,182 2,058,436 4,410,808 1,299,128 3,754,762 1,314,113	1,742,551 1,596,287 1,756,877 2,013,210 825,616 1,197,641 551,077 1,349,720 445,021 1,147,107 573,321	2 1,454,13 1,062,53 1,225,02 3,573,88 410,22 34,77 316,8 1,193,77 5,02 176,5 5,4,8 471,6

PET 040856

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

1

l

J

ſ

- - - -

Table A – 1 Summary of Pre-Assessment Findings – Production Data

	ield Number Producing = Abandoned = Water Inj. =	Well Status		-										
	Producing = Abandoned =	Status				<i>l</i> ilesi	one	Date	S		T	Cum	uiative Production	•
	Abandoned =	1		Spuc	1	Con	npiet	ion	Pro	ductio	n	Oil	Gas	Water
	Abandoned =		MM	DD	YY	MM	DD	YY	MM	DD	m	Barreis	Cubic Feet	Banels
]				ank i Isum		avail ate	able		•	to June 10, 1990	
	WW6	W						84						
	WW7	W_						- 84						
	WW8	W						84						
	A1	Р	4	12	68	1	13	69	9		72	22,562,991	4,999,344	107,671
	A2	P	10	- 16	69	11	7	69	9		72	10,628,527	2,833,729	1,786,118
	A3	P	11	20	89	1	37	70	9		72	9,039,353	9,071,504	37,486
	A4	Р	4	18	70	5	5	70	9		72	3,197,284	792,466	70,875
	A5	P	2	12	72	2	26	72	7		72	13,639,677	3,256,405	886, 434
	A6	A	1	31	79	2	10	79	9		72	7,326,313	1,645,387	41,797
	A7	Р	8	11	72	8	28	72	9		72	17,465,764	4,300,139	2.457,485
	A8	Ρ	3	5	72	3	21	72	7	T	72	14,623,934	3,229,436	8,556,072
	A9	P	6	18	72	6	29	72	7		72	15,925,255	3,972,712	920,111
	A10	Р	4	18	72	5	4	72	7		72	14,544,169	3,083,172	454,947
	A11	Р	7	1	72	7	20	72	7		72	10,976,896	2.065,602	982,140
	A12	P	6	8	72	6	25	72	7		72	17,125,494	3,560,934	15,616
	A13	Р	5	9	72	5	28	72	8		72	82,651,186	2,112,533	1,353,641
	B14	P	7	23	72	8	7	72	11		72	14,025,235	3,538,451	110,336
	B15	P	7	19	72	8	15	72	6		74	9,514,227	1,585,916	17,561
	8158	P	3	3	81	3	31	81	4		81	2,612,201	464,268	316,363
\vdash	B16	P		11	73	1	8	73	2		73	11,539,477	2,431,470	761,153
-	A17	P	8	13	72	8	8	72	10		72	10,267,482	2,376,878	1,305,49
	A18	P	1	25	73	2	16	73	3		73	4,870,084	1,060,881	257,369
	A19	P	3	6	74	3	24	73	4		73	19,003,398	3.998,700	55,13
\vdash		P	1	10	73	3	27	73	2		73		5,082,589	1,120,52
\vdash	A20	P				-			23			26,241,921		
	A21 A22	†	1	23	73	2	20 14	73 73			73	5,979,570	1,315,856	785,109
		A P	12	<u> </u>	2			_			╈	617,728	178,065	1,13
\vdash	A228		5	8	77	5	28	77	6			15,822,924	2,831,429	41,66
-	A23	P	10	20	72	11	15	72	11	┝──╀	72	15,568,100	3,776,160	301,42
	A24	P	9	27	72	10	9	72	10	┝─┼	72	18,861,323	3,876,778	3,800,48
	A25	P	2	<u>†</u>			_	73	î	┝╌┼	73	1,832,136	354,168	612,00
\vdash	A26	P	9		72	9		72		┝──┼	72	14,233,278	3,131,658	1,325,69
	A27	P	6		73	7		73	8	\vdash	73	3,673,508	852.947	241,17
<u> </u>	A28	Р	3	1	73	4	-	73	4		74	18,958,046	3,873,827	39,71
	A29	P	4	28	73	5	17	73	5		73	12,574,617	2,657,847	1,634,71
	A30	P	12	<u></u>	72	12	18	72	1		73	3,498,739	1,158,619	1,618,62
F	B31	Р	4	7	73	4	24	73	8	$ \downarrow \downarrow$	84	4,013,123	1,17'4,423	978,68
L	B32	Р	5	11	73	5	28	73		\square	73	104,625	36,497	95
L	A33	P	7	8	73	7	24	73	8		73	59,269	13,712	3,27
	A34	A	5	27	73	6	13	73	6		73	27,964	6,643	13
	A35	Р	5	26	74	6	15	74	10		75	8,905,595	1,720,418	1,396,47
	B36	Р	11	22	73	12	9	73	11		73	21,334,236	6,541,871	1,638,67
	A38	P	12	29	73	1	15	74	1		76	27,530	15,199	DENTIAL

CA1069604

.,

Table A – 1

·····

5

受

.

, |-

P

F

5

Summary of Pre-Assessment Findings - Production Data

	Field	Well	Γ		N	Ailes	tone	Date	S			Cu	mulative Production	1 *
	Number	Status		Spuc	t	Con	nplet	ion	Pro	ducti	on	Oil	Gas	Water
			MM	00	YY	MM	DD	YY	MM	DD	ŶŶ	Barreis	Cubic Feet	Barrels
	Producing =	 	ł		<u> </u>	R	anki	fnot	avai	ahla			* to June 10, 1990	
	Abandoned = Water Inj. =		1					ed d						
[A39	Р	5	18	74	7	26	74	10		75	3,505,368	782,831	1,79
[A41	Р	9	11	73	9	27	73	10		73	1,598,530	306,777	12
	A42	A	10	23	73	11	8	73	10		73	10,505,870	2,186,271	4
	A42B	Р	4	1	85	4	19	85	5		85	3,017,064	357,626	58
	A43	Р	12	18	73	1	6	74	1	22	74	15,099,713	3,120,567	1,25
	A44	Р	11	16	74	3	3	74	5		. 74	4,448,466	1,323,412	36
	68	Р	1	30	81	2	23	81	3		81	18,095,511	5,418,000	1,93
	A45	Р	11	17	73	12	4	73	1		74	12,024,814	3,591,897	1,03
	A458	Р	9	3	86	9	14	86	9		86	2,738,816	1,035,404	23
	46	Р						74	3		74	5,015,978	982,032	25
[A48	Р	4	15	74	5	2	74	2		86	916,438	329,102	24
	B49	P	3	23	74	4	15	74	4	25	74	9,042,060	2,040,004	75
[A50	Р	8	24	77	9	22	77	11		75	229,541	31,180	1
[B51	٩	8	10	74	9	9	74	9		74	9,315,390	1,985,523	66
[852	P	4	8	75	4	30	75	5		75	8,833,274	2,250,540	1,60
	853	P	5	5	75	5	18	75	7		81	8,209,946	2,447,311	1,03
[854	Р	6	15	75	5	11	75	7		75	9,925,556	1,674,485	
	855	Р	7	25	75	8	21	75	9		82	61,431	14,567	
int ent	79 24.3					Field						69 659,772,244	69 142,302,999	57.82
ent	24.3	-				Field Conc				0e				57.82
ent										90		659,772,244	142,302,999	57,82
ent	24.3 Sacha									90		659,772,244	142,302,999	57.82
ent	24.3 Sacha Estacion Sur									90		659,772,244	142,302,999	57,82
ent	24.3 Sacha Estacion Sur Estacion Central									9e		659,772,244	142,302,999	57,82
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte									90		659,772,244	142,302,999	57,82
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2									g .		659,772,244	142,302,999	57.82
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1							84		9 •		659,772,244	142,302,999	57,82
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2	w						84 84		9 •		659,772,244	142,302,999	57,82
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1	w w						84 84 84				659,772,244	142,302,999	57.82
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3	w						84 84 84		9 •		659,772,244	142,302,999	57.82
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WW3 WIW3 WIW4	w w w						84 84				659,772,244	142,302,999	57.82
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW4 WIW5	w w w		21				84 84 84 84		15	72	659,772,244	142,302,999	
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW3 WIW4 WIW5 WIW6	* * * *		21				84 84 84 84 84 84			72	659,772,244 47.9	142,302,999	6.14
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW3 WIW4 WIW5 WIW6 1	* * * * * * *	- ··· ·	_	69	2	18	84 84 84 84 84 84 84 84		15		659,772,244 47.9 6,808,055	142,302,999 57.2 92,850	6.14
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW3 WIW4 WIW5 WIW6 1 2	W W W W Р	7	21	59 69	2 8	18 31	84 84 84 84 84 84 84 84 84 84		15	73	659,772,244 47.9 6,808,055 2,513,853	142,302,999 57.2 92,850 83,404	6.14 11 3.51
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW4 WIW5 WIW6 1 2 3	Ψ Ψ Ψ Ψ Ψ Ψ Φ Ρ	7	21 4	59 69	2 8 10	18 31	84 84 84 84 84 84 84 84 84 84 84 84 84 8	7 8 7	15 15 15	73 72	659,772,244 47.9 6,808,055 2,513,853 3,091,904	142,302,999 57.2 97,850 92,850 83,404 3,512,162	6.14 11 3.51 1.00
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte 2 WIW1 WIW2 WIW3 WIW4 WIW5 WIW6 1 2 3 4	W W W W W P P P A	7 9 5	21 4 14	69 69 70	2 8 10 6	18 31 11 6	84 84 84 84 84 84 84 84 84 84 84 84 84 8	7 8 7 8	15 15 15	73 72 72	659,772,244 47.9 6,808,055 2,513,853 3,091,904 902,126	142,302,999 57.2 57.2 92,850 83,404 3,512,162 7,232	6.14 11 3.51 1.00 11 7.36
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW4 WIW5 WIW6 1 1 2 3 4 6	W W W W P P P A	7 9 5 4 4 3	21 4 14 23 30 19	59 69 69 70 71 71 71	2 8 10 6 5	18 31 11 6 24 16 10	844 844 844 844 844 844 844 844 844 844	7 8 6	15 15 15 15 15 27 29	73 72 72 72 72 72 72	659,772.244 47.9 6,808,055 2,513,853 3,091,904 902,126 1,646,522 6,872,363 5,847,133	142,302,999 57.2 57.2 92,850 83,404 3,512,162 7,232 117,560 7,368,815 338,242	6.14 11 3.51 1.00 11 7.36 5,28
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 W/W1 WIW2 WIW3 WIW4 WIW5 WIW6 1 2 3 4 6 7	W W W W W P P P A P P P	7 9 5 4 4	21 4 14 23 30 19 21	59 69 70 71 71 71 71	228 1065 544 4	18 31 11 6 24 16 10 12	844 844 844 844 844 844 844 844 844 844	7 8 6 7	15 15 15 15 15 15 27	73 72 72 72 72 72 72 72 72	659,772.244 47.9 6,808,055 2,513,853 3,091,904 902,126 1,648,522 6,872,363 5,847,133 7,104,311	142, 302, 939 57.2 92, 850 83,404 3,512,162 7,232 117, 560 7,368, 81 5 338, 242 224, 224	6.14 11 3.51 1.00 11 7.36 5.26 8,66
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW4 WIW5 WIW6 1 2 3 4 6 7 8	W W W P P P A P P A P	7 9 5 4 4 3	21 4 14 23 30 19	59 69 69 70 71 71 71	Conc 2 8 10 6 5 5 4	18 31 11 6 24 16 10	844 844 844 844 844 844 844 844 844 844	7 8 7 7 8 7 7 7 7	15 15 15 15 15 27 29	73 72 72 72 72 72 72	659,772.244 47.9 6,808,055 2,513,853 3,091,904 902,126 1,646,522 6,872,363 5,847,133	142,302,999 57.2 57.2 92,850 83,404 3,512,162 7,232 117,560 7,368,815 338,242	6.14 11 3.51 1.00 11 7.36 5.26 8,66
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW4 WIW5 WIW6 1 2 3 4 6 7 8 9	W W W P P P A P P P P P P	7 9 5 4 4 3 3	21 4 14 23 30 19 21	59 69 70 71 71 71 71	228 1065 544 4	18 31 11 6 24 16 10 12	844 844 844 844 844 844 844 844 844 844	7 8 6 7 7 8	15 15 15 15 15 27 29	73 72 72 72 72 72 72 72 72	659,772.244 47.9 6,808,055 2,513,853 3,091,904 902,126 1,648,522 6,872,363 5,847,133 7,104,311	142, 302,999 57.2 92,850 83,404 3,512,162 7,232 117,560 7,368,815 338,242 224,224 188,239	6.14 11 3.51 1.00 11 7.36 5.26 8,86 96
ent	24.3 Sacha Estacion Sur Estacion Central Estacion Norte Estacion Norte 2 WIW1 WIW2 WIW3 WIW4 WIW5 WIW6 1 2 3 4 6 7 8 9	W W W P P P A P P P P P P	7 9 5 4 4 3 3	21 4 14 23 30 19 21	59 69 70 71 71 71 71	228 1065 544 4	18 31 11 6 24 16 10 12	844 844 844 844 844 844 844 844 844 844	7 8 6 7 7 8	15 15 15 15 15 27 29	73 72 72 72 72 72 72 72 72	659,772.244 47.9 6,808,055 2,513,853 3,091,904 902,126 1,648,522 6,872,363 5,847,133 7,104,311	142, 302, 939 57.2 92, 850 83,404 3,512,162 7,232 117, 560 7,368, 81 5 338, 242 224, 224	57,82 57,82 6,14 11 3,51 1,00 11 7,36 5,28 8,88 96 0ENTIAL

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table A – 1Summary of Pre-Assessment Findings – Production Data

Field	Well				liles	000	Dato					ulative Production	
Number	Status	<u> </u>	Souc			npleti	- 1		ducti	-	Oil	Gas	Water
11011100			DD	_	MM	DD		MM	_		Barreis	Cubic Feet	Barrels
Producing =	P									·· 1			Carrens
Abandoned =	A	1			Bk	ank il	not	avail	able		•	to June 10, 1990	
Water Inj. =]			As	sum	ed d	ate					
11	P	5	29	71	6	18	71	6		72	3,376,553	93,493	2.334,63
12	P	4	28	71	5	17	71	6	_	72	4,327,496	207,415	2,109,15
13	P	3	31	71	4	19	71	6		72	3,539,408	40,429	1,633,46
14	P	5	27	71	6	18	71	6		72	4,284,374	44,494	4,767,59
15	P	6	14	71	7	1	71	6		72	133,360	848,517	103,69
16	P	6	23	71	7	17	71	6		72	2,230,445	412,585	1,135,00
17	P	7	29	71	8	24	71	6		72	3,804,965	538, 583	1,058,54
18	P	7	9	71	8	5	71	6		72	6,777,466	64,165	6,784,76
19	P	7	20	71	8	13	71	6		72	4,021,893	627,198	408,10
20	Р	7	2	71	7	26	71	6		72	5,615,650	1,300,025	646,09
21	Р	9	21	71	10	5	71	6		72	3,196,853	47,556	2,857,20
22	P	8	25	71	9	19	71	6		72	3,408,435	80,752	2,398,90
23	P	8	17	71	9	5	71	6		72	4,693,346	148,762	969,05
24	P	9	17	71	10	9	71	6		72	768,048	41,010	396,61
25	P	8	27	71	9	-14	71	6		72	8,966,699	526, 478	4,373.02
26	P	11	11	71	12	2	71	7		72	8,435,943	168,274	4,458,07
27	Р	9	21	71	8	9	_71	6		72	10,575,509	259, 446	2,008,48
28	P	12	8	71	12	29	71	6		72	11,026,862	2,610,034	547,36
29	Р	10	15	71	_11	8	71	6		72	4,947,373	410,404	2,409,70
30	P	10	12	71	11	2	71	6		72	6,892,589	74,350	5,890,25
31	P	11	14	71	12	1	71	6		72	1,865,994	53,156	1,834,33
32	Р	12	15	72	1	4	72	10		72	3,214,778	150,082	2,177,91
33	P	11	9	71	12	1	71	6		72	4,166,003	853,649	1,293,31
34	P	12	4	71	12	21	71	6		72	14,969,044	2,603,791	6,528,48
35	P	10	12	71	11	5	71	- 4		73	4,174,537	81,094	4,564,13
36	P	12	28	71	1	15	72	7		72	10,412,545	2,581,926	405,04
37	P	1	3	72	1	26	72	6		72	7,401,696	1,656,495	161,53
38	P	-1	10	72	1	27	72	10		72	1,449,157	1,899,570	1,899,57
39	Р	1	21	72	3	5	72	6		72	3,995,275	950,019	431,30
40	P	2	6	72	2	24	72	6		72	7,225,878	216,400	2,521,4
41	P	11	18	72	12	18	72	12		72	3,403,875	635,640	567,35
42	P	3	14	72	4	1	72	6		72	6,440,538	8,111	5,497,75
43	P	4	7	72	4	29	72	8		72	7,208,553	210,285	7,261,99
44	P	5	24	72	6	11	72	9		72	2,031,922	373,805	373,80
45	P	3	7	72	4	2	72	6		72	1,191,509	29,169	144,32
46	P	6	16	72	7	4	72	2		75	2,261,694	22,523	83,70
47	Р	5	7	72	5	25	72	9		72	6,498,735	94,742	6,215,39
48	w	6	18	72	7	5	72	8	6	72	7,620	61	23
49	P	2	6	73	2	24	73	5		73	3,790,393	205, 423	3,947,84
50	Р	2	20	73	3	20	73	4		73	5,662,806	1,116,983	499,7
51	P	3	7	73	3	25	73	2		75	4,880,535	601,135	790,1
52	Р	3	23	73	4	8	73	4		73	4,267,152	46,153	3,411,5
53	Р	4	6	73	4	21	73	5		73	3,297,553	701,275	27,5
54	P	5	1	73	5	16	73	12		76	3,771,115	1,023,076	88,4
55	P	1	25	73	5	10	73	5	t	73	8,002.619	2.070.688	747,4

PET_040859

CA1069606

.

Table A – 1 Summary of Pre-Assessment Findings – Production Data

	1	T			411		0						
Field	Weil	<u> </u>			Ailest		_	_		-		nulative Production	
Number	Status		Spuc			nplet DD		_	duct DD		Oil Barreis	Gas Cubic Feet	Wate
Producing =		(AUNAL)	00		Tenter	00			00		Carrens		Barrels
Abandoned =		1			Bla	ank i	fnot	avail	able			* to June 10, 1990	
Water Inj. =	W]			As	sum	ed d	ate					
<u></u>	P	5	19	73	6	2	73	12		76	2,199,614	552,862	
56	A	6	7	73	6	ß	73	6	29	73	96.371	16,342	
58	P	5	27	73	6	11	73	10		73	2,857,402	54,934	1.6
59	P	8	16	73	8	28	73	11		74	6,543,197	1,660,379	
60	P	7	2	73	7	16	73	9		73	1,758,565	104,090	2,0
61	P	7	27	73	8	11	73	9		73	891,200	113,790	4,5
62	P	9	17	73	10	21	73	2		74	61,911	7,072	
63	P	10	7	73	10	24	73	11		73	1,359,961	19,367	1,3
64	P	8	19	73	9	4	73	9		73	3,704,968	139,863	4,8
65	P	9	9	73	9	23	73	10		73	2,724,753	50,280	3,0
66	A	7	19	73	B	2	73	9		73	2,250,109	521,753	
67	P	11	5	73	11	20	73	12		73	1,268,755	20,221	
68	Р	11	29	73	12	13	73	1		74	2,537,375	258,087	1,
69	A	12	25	73	1	9	74	1	14	74	0	0	
70	Р	1	18	74	2	3	74	2		74	7,416,072	65,434	13,
71	?	6	14	74	8	2	74	8		75			
72	Р	3	18	74	4	12	74	4		74	6,274,479	61,211	3,
73	Р	2	12	74	4	23	74	4		74	5,378,959	43.859	4,1
74	P	5	3	74	5	20	74	6		74	4,310,409	245,629	3,0
75	Р	5	1	74	5	27	74	6		74	4,131,693	66,518	1,
76	A	1	28	77	2	21	77			L	0	0	
π	Р	6	11	76	6	24	76	7		76	3,228,388	267,172	1,4
78	Р	7	7	76	7	29	76	8	-	76	2,881,975	39,805	1,4
79	A	2	25	Π	3	12	77				0	0	
80	P	8	1	76	8	28	76	8		76	4,069,211	128,114	4,0
81	P	9	1	76	9	19	76	9		76	2,728,826	31,850	1,
82	P	9	22	76	10	5	76	11		76	6,413,401	76,269	3,1
83	P	10	14	76	11	8	76	11		76	6,280,792	67,574	3,
84	P	12	8	76	12	26	76	1		77	2,658,936	273, 393	2.1
85	P	11	12	76	12	4	76	12		76	3,440,107	106,623	2,
86	P	10	31	79	12	21	79	8		80	3,878,107	908,481	
87	P	12	24	79	1	15	80	1		80	3,548,762	40,792	1.
88	P P	7	2	80	7		80	7	_	80	2,358,898	22,354	1,5
89	P	4	4	72	6	16	78	7		78	1,953,334	120,873	
90	P	6	7	79	7	3	79	7		80	2,621,494	646,382	1.
91	P	79	27	80	8	19	80	8		80	2,298,812	344,399	<u>_</u>
92 93	P	9	20	8	10 9	10	80 80	10 9	_	80 80	2,112,704	18,157	
	P		24	- 80		15	_	- 3		_	1,851,237		
<u>94</u> 95	P	4	8	81 81	5 6	2	81 81	9		83 81	205,016	1,628	
	P	┝╼╼╼╡	14	81		° 25	81	9		81	1,857,063	81,173	
97	P	8	3	81	8 10	28	81	11		81	1,634,163	13,809	1.
	P	10 12	5	81	10	- 20	82	1		82	2,321,831	25,551	
	·	+	_		7	8	82	7			1,818,070	62,258	<u> </u>
100	P P	6	10 7	82 83	3	31	 83	- 7		82	2,437,674	28,022	

CONFIDENTIAL PET 040860

CA1069607

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table A – 1 Summary of Pre-Assessment Findings – Production Data

	Identification	L	******				Des	спр	tion c	f Pro	duct	ion Stations and W	ell Sites	
	Field	Weil				Ailest	one	Date					nulative Production	*
	Number	Status		Spuc		_	npiet	_		ducti			Gas	
	NUMBER	Status		DD		_			-	DD		Barrela	Cubic Feet	Water Barreis
	Producing =	P	-							00				Daneus
	Abandoned =	A	1	ſ		B⊧	ank i	fnot	avail	able			* to June 10, 1990	1
	Water inj. =	W]	[As	sum	ed d	ate					
	101	Р	12	19	82	1	19	83	1		83	1,858.525	14,798	230,211
	102	P	4	5	83	5	1	83	5		83	2,037,174	434,767	219,216
	103	Р	10	31	85	11	21	85	12		85	1,009,686	6,201	506, 350
	104	Ρ	2	13	86	4	2	86	4		86	612,921	10,564	518,478
	106	Ρ	4	20	86	6	14	88	6		86	931,888	19,760	852,005
	107	P	10	31	86	12	12	86	1		87	611,973	27,489	8,092
	108	Р	6	4	87	7	2	87	9		87	922, 533	4,984	118,433
	109	ρ	7	3	87	8	14	87	9		87	719,794	9.631	330,891
	110	Р	10	1	87	11	10	87	11		87	766,873	6,102	142,855
	111	P	2	13	88	3	17	88	3		88	767,451	18,156	10,480
	112	Ρ	3	18	88	4	15	88	4		88	573,087	3,836	537,775
	113	ρ	4	16	88	5	16	68	6		88	777,785	178,810	128,789
	114	P	9	3	90	10	10	90	10		90			
	115	Р	7	8	90	8	11	90	10		90			
	116	Р	11	17	90	12	13	90	12		90			
			لننبط								1			······································
Count	120	1									٢	110	110	110
Percent	36.9				1	Field	Dan de	-			ł	388,626,689	47,054,237	214,668,652
- GIOGINI	100.3	ł							, centa,		F	28.2	18.9	57.0
(Culebra				•			i ber			L			57.0
	Estacion	i			ſ				1					
	1	P	11	8	73	11	30	73	3			0.007		200 200
	2	P	8		77		_	77		_	- 611	2.337.1021	201.1651	399.732
						. 21	26		1 10		61 87	2,337,102	201,165	399,792
	L	L	<u> </u>	18	<u> </u>	8	25	11	10		81 87	452,752	55,272	163,672
	•	L	<u> </u>	18		8	25	11	10		_	452,752	55,272	163,672
	2	<u> </u>	<u> </u>	18	لينيا		·				_	452,752	55,272	163,672
	•		ن ٿ ل	18	دا	Field	Produ	uction	• •	1	_	452,752 2 2,789,854	55,272 2 256,437	163,672 2 563,464
Percent	2	<u> </u>	ن د ل	18	دا	Field	Produ	uction		9•	_	452,752	55,272	163,672
	2	 	°		دا	Field	Produ	uction	• •	9•	_	452,752 2 2,789,854	55,272 2 256,437	163,672 2 563,464
Percent	2		<u> </u>		دا	Field	Produ	uction	• •	94	_	452,752 2 2,789,854	55,272 2 256,437	163,672 2 563,464
Percent	2			18	دا	Field	Produ	uction	• •	9e	_	452,752 2 2,789,854	55,272 2 256,437	163,672 2 563,464
Percent	2 0.6 Yulebra	 	5		دا	Field	Produ	uction	• •	9•	_	452,752 2 2,789,854	55,272 2 256,437	163,672 2 563,464
Percent	2 0.6 Yulebra Estacion]			 	Field	Produ	uction n per	centa	84	87	452,752 2 2,789,854 0.2	55,272 2 256,437 0.1	163,672 2 563,464 0.1
Percent	2 0.6 Yulebra Estacion	P	5	5	80	Field Conc 5	Prodi ession	action n per 80	centa	3.	87	452,752 2 2,789,854 0.2 2,707,609	55,272 2 256,437 0.1 351,069 5,222	163,672 2 563,464 0.1 86,621
Percent	2 0.6 Yulebra Estacion 1 2	P	5	5	80 85	Field Conc 5 5	Produ • salo 24 21	action n per 80 85	centa 2 6	9.	87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237	55,272 2 256,437 0.1 351,069	163,672 2 563,464 0.1 86,621 11,050
Percent	2 0.6 Yulebra Estacion 1 2 3	P	5	5	80 85	Field Conc 5 5	Produ • salo 24 21	action n per 80 85	centa 2 6	3.	87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237 552,266	55,272 2 256,437 0.1 351,069 5,222 47,272	163,672 2 563,464 0.1 86,621 11,050 1,439
Count	2 0.6 Yulebra Estacion 1 2 3 3	P	5	5	80 85 88	Field Conc 5 5 2	Prodi	action n per 80 85 85	centa	9 .	87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237 552,266 3	55,272 2 256,437 0.1 351,069 5,222 47,272 3	163,672 2 563,464 0.1 86,621 11,050 1,439 3
Count	2 0.6 Yulebra Estacion 1 2 3 3	P	5	5	80 85 88	Field Conc 5 5 2	Produ ====ion 24 21 11 Produ	action n per 80 85 85	2 6 3		87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237 552,266 3 3,916,112	55,272 2 256,437 0.1 351,069 5,222 47,272 3 403,553	163,672 2 563,464 0.1 86,621 11,050 1,439 3 99,110
Count	2 0.6 Yulebra Estacion 1 2 3 3 3	P	5	5	80 85 88	Field Conc 5 5 2	Produ ====ion 24 21 11 Produ	action n per 80 85 85	centa		87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237 552,266 3	55,272 2 256,437 0.1 351,069 5,222 47,272 3 403,553 0.2	163,672 2 563,464 0.1 86,621 11,050 1,439 3 99,110 0.0
Percent	2 0.6 Yulebra Estacion 1 2 3 3	P	5	5	80 85 88	Field Conc 5 5 2	Produ ====ion 24 21 11 Produ	action n per 80 85 85	2 6 3		87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237 552,266 3 3,916,112	55,272 2 256,437 0.1 351,069 5,222 47,272 3 403,553 0.2 CON	163,672 2 563,464 0.1 86,621 11,050 1,439 3 99,110 0.0 F I DENTIA (
Count	2 0.6 Yulebra Estacion 1 2 3 3 3	P	5	5	80 85 88	Field Conc 5 5 2	Produ ====ion 24 21 11 Produ	action n per 80 85 85	2 6 3		87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237 552,266 3 3,916,112	55,272 2 256,437 0.1 351,069 5,222 47,272 3 403,553 0.2 CON	163,672 2 563,464 0.1 86,621 11,050 1,439 3 99,110 0.0
Count	2 0.6 Yulebra Estacion 1 2 3 3 3	P	5	5	80 85 88	Field Conc 5 5 2	Produ ession 24 21 11 11	action n per 80 85 85	2 6 3		87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237 552,266 3 3,916,112	55,272 2 256,437 0.1 351,069 5,222 47,272 3 403,553 0.2 CON	163,672 2 563,464 0.1 86,621 11,050 1,439 3 99,110 0.0 FIDENTIAL T 040861
Count	2 0.6 Yulebra Estacion 1 2 3 3 3 0.9 Yuca	P	5	5	80 85 88	Field Conc 5 5 2	Produ ====ion 24 21 11 Produ	action n per 80 85 85	centa 2 6 3 centa	8a	87 81 85	452,752 2 2,789,854 0.2 2,707,609 656,237 552,266 3 3,916,112	55,272 2 256,437 0.1 351,069 5,222 47,272 3 403,553 0.2 CON	163,672 2 563,464 0.1 86,621 11,050 1,439 3 99,110 0.0 F I DENTIA (

CA1069608

Table A - 1

.

Summary of Pre-Assessment Findings - Production Data

												· · · · · · · · · · · · · · · · · · ·		
	Field	Well			M	Ailes	tone	Date	S			Curr	ulative Production	•
	Number	Status		Spuc	_		nplet	_	Pro	ductio	on	Oil	Gas	Water
	Constructor (MM	DD	ŶŶ	MM	DD	**	MM	DD	YY	Barrels	Cubic Feet	Barrels
	Producing = Abandoned =	P A	ł				ank i	fnat					te him 10 1000	
	Water Inj. =	- ŵ			<u> </u>		SSUM			apie			' to June 10, 1990	
	Water ing. =		1		<u> </u>		5011		đia					
	3	Ρ	0	30	79	8	31	79	1		81	397,253	43,666	245,05
	4	ρ	9	5	79	11	2	79	12		80	814,840	79,969	196,70
	5	Ρ	10	9	79	11	8	79	1		81	771,660	69,650	1,221,8
	6	Р	12	31	79	2	3	80						
	9	Р	0	21	80	11	7	80	4		81	2,135,493	296,823	64,01
	10	Р	6	23	81	7	26	81				6,068,691	575,706	924,12
	12	A	3	30	80	4	28	80	12		80	0	0	
	<u></u>													
Count	9										ſ	8	8	
Percent	2.8					Field	Produ	ction	1		ľ	12,993,928	1.331,464	3,300,3
						_	assio				f	0.9	0.5	0,000,0
Y	uca Sur							•		•	Ľ			
	ليستعد تتتنيه													
	1	P	11	17	79	12	24	79	1	T	86	1,280,969	98,885	1,252,5
	L							_						
Count	1										ſ	1	1	
Percent	0.3					Field	Produ	action			h	1,280,969	98,885	1,252,5
	••••••••••••••••••••••••••••••••••••••					Cone	assio		-ente	-	- F	0.1	0.0	
						·	·		ł					
	Estacion Sur Estacion Central													
	1	Ρ	2	15	70	3		70						
					. <i>(</i> u)		29	/0	4		75	4 511 395	25,719	359.8
	2	P	6	18	70 70		_	70 70	4		75 75	4,511,395	25,719 12,558	
	2		_			3 8 11	3	_				4,511,395 764,769 4,097,170	25,719 12,558 384,873	294,0
		Р	6	18	70	8	3	70	4		75	764,769	12,558	294,0 290,7
	3 4 5	Р Р Р	6 10 12 1	18 2 22 27	70 70 73 74	8 11 1 2	3 12 20 16	70 70 74 74	4 5 5 4		75 76 86 75	764,769 4,097,170 431,998 915,306	12,558 384,873 116,216 14,755	294,0 290,7 12,3 1,446,5
	3 4 5 6	P P P P	6 10 12 1 2	18 2 22 27 24	70 70 73 74 74	8 11 1 2 3	3 12 20 16 14	70 70 74 74 74	4 5 5 4 4		75 76 86 75 75	764,769 4,097,170 431,998 915,306 2,202,281	12,558 384,873 116,216 14,755 8,834	294,0 290,7 12,3 1,446,5 1,824,2
	3 4 5 6 7	P P P P	6 10 12 1 2 10	18 22 27 24 20	70 70 73 74 74 74	8 11 1 2 3 11	3 12 20 16 14 23	70 70 74 74 74 74	4 5 5 4 4 4		75 76 86 75 75 75	764,769 4,097,170 431,998 915,306 2,202,281 4,093,182	12,558 384,873 116,216 14,755 8,834 30,820	294,0 290,7 12,3 1,446,5 1,824,2 223,6
	3 4 5 6 7 8	P P P P P	6 10 12 1 2 10 4	18 2 22 27 24 20 13	70 70 73 74 74 74 74	8 11 1 2 3 11 5	3 12 20 16 14 23 1	70 70 74 74 74 74 74	4 5 5 4 4 4 4		75 76 86 75 75 76 76 75	764,769 4,097,170 431,998 915,306 2,202,281 4,093,182 1,528,216	12,558 384,873 116,216 14,755 8,834 30,820 97,867	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3
	3 4 5 6 7 8 9	P P P P	6 10 12 1 2 10 4 5	18 22 27 24 20	70 70 73 74 74 74 74 74	8 11 2 3 11 5 6	3 12 20 16 14 23 1 9	70 70 74 74 74 74 74 74	4 5 5 4 4 4 4		75 76 86 75 75 75 75 75 75	764,769 4,097,170 431,998 915,306 2,202,281 4,093,182 1,528,216 4,228,668	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8
	3 4 5 6 7 8	P P P P P P	6 10 12 1 2 10 4	18 2 22 27 24 20 13 20 1	70 70 73 74 74 74 74 74 74	8 11 1 2 3 11 5 6 12	3 12 20 16 14 23 1 9 5	70 70 74 74 74 74 74 74 74	4 5 5 4 4 4 4		75 76 86 75 75 76 76 75	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,228,668 723,389	12,558 384,873 116,216 14,755 8,834 30,820 97,867	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4
	3 4 5 6 7 8 9 10	P P P P P P P	6 10 12 1 2 10 4 5 11	18 2 22 27 24 20 13 20 1	70 70 73 74 74 74 74 74 74	8 11 2 3 11 5 6	3 12 20 16 14 23 1 9 5 26	70 70 74 74 74 74 74 74			75 76 86 75 75 75 76 75 75 75 77	764,769 4,097,170 431,998 915,306 2,202,281 4,093,182 1,528,216 4,228,668	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4
	3 4 5 6 7 8 9 10 11 12 13	P P P P P P P P P	6 10 12 1 2 10 4 5 11 6 6 7	18 2 27 24 20 13 20 1 28 8 29	70 70 73 74 74 74 74 74 74 74 74 74	8 11 1 2 3 11 5 6 12 7 7 8	3 12 20 16 14 23 1 9 5 28 8 28 8 24	70 70 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 76 75 75 75 75 75 76 76 76	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,229,668 723,389 4,962,226 4,219,491 4,107,226	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5
	3 4 5 6 7 8 9 10 11 12 13 14	Р Р Р Р Р Р Р	6 10 12 1 2 10 4 5 11 6 6 7 8	18 2 22 27 24 20 13 20 1 28 8 29 28	70 73 74 74 74 74 74 74 74 74 74 74 74	8 11 2 3 11 5 6 12 7 7 7 8 10	3 12 20 16 14 23 1 9 5 26 8 24 29	70 70 74 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 76 75 75 75 77 75 75 76 76 76 76	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,228,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576 369,933	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5 2,207,5
	3 4 5 6 7 8 9 10 11 12 13 14 15	Р Р Р Р Р Р Р Р	6 10 12 1 2 10 4 5 11 8 6 7 8 7	18 2 22 27 24 20 13 20 1 3 20 1 28 8 29 28 1	70 73 74 74 74 74 74 74 74 74 74 74 74 74 74	8 11 1 2 3 11 5 6 12 7 7 7 8 10 8	3 12 20 16 14 23 1 9 5 28 8 24 29 9	70 70 74 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 76 75 75 75 75 75 75 76 76 76 78 78	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,229,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218 4,349,489	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576 369,933 236,047	294.0 290.7 12.3 1,446.5 1.824.2 223.6 284.3 2.245.8 653.4 573.5 1,195.4 573.5 2,207.5 1,890.6
	3 4 5 6 7 8 9 10 11 12 13 14 15 16	Р Р Р Р Р Р Р Р Р	6 10 12 1 2 10 4 5 11 8 6 7 8 7 11	18 2 22 27 24 20 13 20 1 1 28 8 29 28 29 28 1 3	70 73 74 74 74 74 74 74 74 74 74 74 74 74 74	8 111 1 2 3 3 111 5 6 6 12 7 7 7 8 8 10 8 12	3 12 20 16 14 23 1 9 5 28 8 24 29 9 13	70 74 74 74 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 75 75 75 75 75 75 75 75 76 76 76 78 78 76	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,229,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218 4,349,489 8,772,331	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576 369,933 236,047 1,136,560	294.0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5 2,207,5 1,890,6 470,9
	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Р Р Р Р Р Р Р Р Р Р	6 10 12 1 2 10 4 5 5 11 6 6 7 7 8 8 7 7 11 11	18 2 22 27 24 20 13 20 1 28 8 29 28 29 28 1 3 19	70 70 73 74 74 74 74 74 74 74 74 74 74 74 74 74	8 11 1 2 3 3 11 5 6 12 7 7 7 8 10 8 10 8 12 2	3 12 20 16 14 23 1 1 9 5 5 25 8 8 24 29 9 13 19	70 74 74 74 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 75 75 75 75 75 75 76 76 76 76 78 78 75	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,229,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218 4,349,489 8,772,331 1,692,964	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576 369,933 236,047 1,136,560 345,472	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5 2,207,5 1,890,6 470,9 1,051,2
	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	P P P P P P P P P P P P P P	6 10 12 1 2 10 4 5 11 8 6 7 7 11 1 1 1 12	18 2 27 24 20 13 20 1 28 8 29 28 29 28 1 3 19 16	70 70 73 74 74 74 74 74 74 74 74 74 74 74 74 74	8 11 1 2 3 3 11 5 6 6 12 7 7 7 8 10 8 12 2 2 1	3 12 20 16 14 23 1 1 9 5 5 28 8 8 24 29 9 13 19 14	70 74 74 74 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 75 75 75 75 75 75 75 75 76 76 76 78 78 76	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,229,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218 4,349,489 8,772,331 1,692,964 7,725,908	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576 369,933 236,047 1,136,560 345,472 1,077,300	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5 2,207,5 1,890,6 470,9 1,051,2
-	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Р Р Р Р Р Р Р Р Р Р	6 10 12 1 2 10 4 5 11 6 6 7 7 7 11 1 1 1 2 9	18 2 27 24 20 13 20 1 28 8 29 28 1 3 19 16 25	70 70 73 74 74 74 74 74 74 74 74 74 74 74 74 74	8 11 1 2 3 11 5 6 12 7 7 7 8 10 8 12 2 1 12 12	3 12 20 16 14 23 1 9 9 5 5 28 8 8 24 29 9 13 19 14 7	70 70 74 74 74 74 74 74 74 74 74 74 74 74 75 75 78			75 76 86 75 75 75 75 75 75 76 76 76 76 78 76 78 76 76	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,229,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218 4,349,489 8,772,331 1,692,964 7,725,908 0	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576 369,933 236,047 1,136,560 345,472 1,077,300 0	294,0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5 2,207,5 1,890,6 470,9 1,051,2 351,3
-	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19B	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р	6 10 12 1 2 10 4 5 11 8 6 7 7 11 1 1 1 12	18 2 27 24 20 13 20 1 28 8 29 28 29 28 1 3 19 16	70 70 73 74 74 74 74 74 74 74 74 74 74 74 74 74	8 11 1 2 3 3 11 5 6 6 12 7 7 7 8 10 8 12 2 2 1	3 12 20 16 14 23 1 1 9 9 5 5 8 8 24 29 9 13 13 19 14 7 7 19	70 74 74 74 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 75 75 75 75 75 75 76 76 76 76 78 78 75	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,229,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218 4,349,489 8,772,331 1,692,964 7,725,908	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576 369,933 236,047 1,136,560 345,472 1,077,300	294.0 290,7 12,3 1,446,5 1,824,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5 2,207,5 1,890,6 470,9 1,051,2 351,3
-	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р	6 10 12 10 4 5 5 11 8 6 7 7 11 1 12 9 3	18 2 27 24 20 13 20 1 28 8 29 28 29 28 29 28 1 3 19 16 25 20	70 70 73 74 74 74 74 74 74 74 74 74 74 74 74 74	8 11 2 3 3 11 5 6 12 7 7 7 8 10 8 12 2 1 12 12 12 4	3 12 20 16 14 23 1 1 9 9 5 5 8 8 24 29 9 13 13 19 14 7 7 19	70 70 74 74 74 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 75 75 75 76 76 76 76 76 76 78 76 78 78 80	764,769 4,097,170 431,998 915,306 2,202,261 4,093,182 1,528,216 4,229,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218 4,349,489 8,772,331 1,692,964 7,725,908 0 641,620	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 360,576 369,933 236,047 1,136,560 345,472 1,077,300 0	294,0 290,7 12,3 1,446,5 1,624,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5 2,207,5 1,890,6 470,9 1,051,2 351,3
-	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 198 20	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р	6 10 12 10 4 5 5 11 8 6 7 7 11 1 12 9 3	18 2 27 24 20 13 20 1 28 8 29 28 29 28 29 28 1 3 19 16 25 20	70 70 73 74 74 74 74 74 74 74 74 74 74 74 74 74	8 11 2 3 3 11 5 6 12 7 7 7 8 10 8 12 2 1 12 12 12 4	3 12 20 16 14 23 1 9 9 5 5 5 28 8 8 24 29 9 9 13 19 14 7 7 19 23	70 70 74 74 74 74 74 74 74 74 74 74 74 74 74			75 76 86 75 75 75 75 75 75 76 76 76 76 78 76 78 76 78 78 78 78 78 78 78 78 78 78 78 78 78	764,769 4,097,170 431,998 915,306 2,202,281 4,093,182 1,528,216 4,228,668 723,389 4,962,226 4,219,491 4,107,226 4,032,218 4,349,489 8,772,331 1,692,964 7,725,908 0 641,620 1,526,690	12,558 384,873 116,216 14,755 8,834 30,820 97,867 114,304 119,294 360,576 406,946 369,933 238,047 1,138,560 345,472 1,077,300 0 59,797 220,949	359,8 294,0 290,7 12,3 1,446,5 1,624,2 223,6 284,3 2,245,8 653,4 573,5 1,195,4 573,5 2,207,5 1,890,6 470,9 1,051,2 351,3 3 1,154,5 337,5

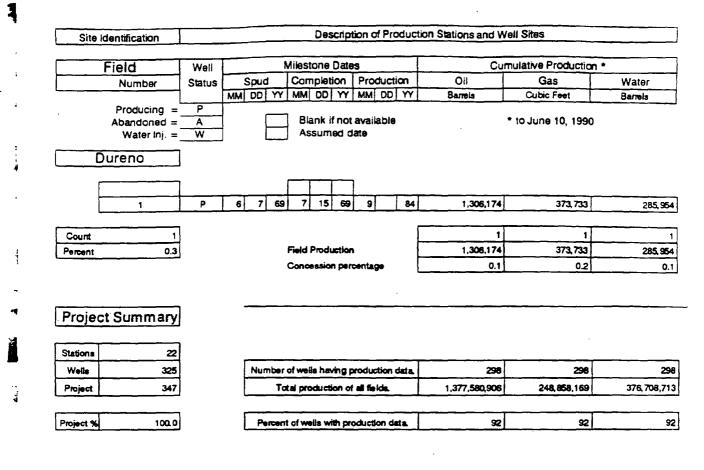
CONFIDENTIAL PET 040862

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

ġ.

 Table A – 1

 Summary of Pre-Assessment Findings – Production Data



CONFIDENTIAL PET 040863

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table A - 1

Summary of Pre-Assessment Findings - Production Data

CA1069611

CONFIDENTIAL PET 040864

CA1069611

Table A – 2 Summary of Pre-Assessment Findings – Environmental Data

	Intification						in 198		.,,,,,,,	arbons		Wellsi Iorkov		(1079	brooef
F	ield	Data	Site	Cond			acent	_	Llea	Pit Size	the second se	91 9	_	Number	90 Spills)
····-	Number	Available	1	2	3	1	2	3	4	m2		nber by		of Spills	Voturne
		Ataliasia	L	<u> </u>			-					iber by	year.	Or Spella	Barrete
	Producing = Abandoned = Water Inj. =	'n	See	footn	ote foi	r head	ling de	finitic	ns.				``	See spill rec Totals exclu	ord for de <u>tail.</u> Ide stations.
Lago	o Agrio														
E	stacion Central													16	1214
	Estacion Norte		L											1	50
	1	1	1			1				225				1	50
	2	1	1						1	400	1			1	30
	3	1	1						1	900					
	4	1	1			1				375			\perp	2	4
- I	5	1	L	1		-1				200					
	6	1			1			1		144		_			
	7	1	ļ	1				1					1	1	15
L	8	1	1			1				420			_	2	103
	9		ļ										_	4	
	98	1		1		1				240			_	L	
	10	1	+		1	1				225			1		
	11 B	1		ļ	1	1				378	1-1-			1 1	25
	12	1				1				150	1		1	+	
	13	1	1							144	1-1			1	45
	14	· <u>1</u>	ļ	1		1				200				<u></u>	
<u> </u>	15	1			1				1	225	+			11	15
-	16	1	 			1				1200			_		
	16B												+	- <u> </u>	
	17	1	1			1				330			-	<u> </u>	15
	18	1	1			1				225			<u> </u>	┢	
- H	19	1		1			1						4	<u> </u>	
	20	1				1				200	}		+	<u> </u>	
	21	1								600				2	45
	22	1	<u> </u>	1					1	225	╟━╾┽		_	+	↓ −−−−−−↓
	23	<u> </u>	<u>+</u>			1				784	1		_	2	
	24	1	1						1	400	+	1	1	1	
<u> </u>	25	ļ	ļ	 	ļi				 					11	+
<u> </u>	26	1	+		ļ				1				-	2	40
	27	1	<u>}</u>	1		1				300	!			<u> </u>	┝┥
	28	1		ļ	1	1				ļ					┝───┤
┣—	29	1	+ · · · · · · · · · · · · · · · · · · ·			. 1	l		 	225				<u></u>	+
	30	1				1			 	378	∔				╉╾╍╍╼╼┥
	31	1		 	1	1			 	225				<u> </u>	
	32	1		1	ļ	1			ļ	100				<u> </u>	┥
	33		ļ	ļ	ļ				<u> </u>	ļ			_	+	<u> </u>
	34	ļ	 	ļ	ļ	L			 	ļ			<u> </u>	+	↓
L	35	l	L	L	l	l			L	L					JJ
nt	37	31	16	8	7	20	1	2	8	28	11	-11	3	0 15	583
ent	11.4	100	_		23	65	3	6				3	_		
												cent of	Total	-	ENTIAL 140865

.145

 Table A = 2

 Summary of Pre-Assessment Findings - Environmental Data

Site	Identification	Data Fi	rom E						lydrod	arbons	{		lsite			Record
					ta coll	_	the second day of the					· · · · · ·	OVER	_	(1973-	90 Spills
	Field	Data		Condi				Land	_	Pit Size	90	91	92	93	Number	Volume
	Number	Available	1	2	3	1	2	3	4	m2	Nu	mber	by ye		of Spills	Barrels
	Orestusian -		Saa	footo	ote foi	r head	ina d	oficitic	00							cord for det
	Producing = Abandoned =		266	loour		noac	nig u		113.							ude station:
	Water Inj. =															
		•														
Pa	rahuacu															
								·						1		
ļ	Estacion															<u> </u>
	1														1	45
ļ	2	ļ											2			+
ļ	3													\vdash		
ļ	4	<u> </u>													1	+
L	5	l							L			1			1	L
Count	5	0	0	0	0	0	0	0	0	0		1	1	0	·	45
	1.5	<u></u>			0	0	0				20	20	20	0	<u>`</u>	
Percent	1.3	<u>i </u>				0	0				يم ا	20	20			
1	2	1	1						1	352	1					
1	2	1	1						1		— ,					
	23	1	1		1				1	240 128	1					
			1		1					240		1				
	3	1	1						1	240 128		1				
	3	1	1		1				1	240 128 625		1				
	3 4 5 6	1 1 1			1				1	240 128 625 378						
Count	3 4 5 6 6	1 1 1 5	1	1	1	0	0	0	1 1 5	240 128 625 378 5	2	1	0	0		
Count Percent	3 4 5 6	1 1 1			1	0	0	0	1 1 5	240 128 625 378			0			
Percent	3 4 5 6 6 1.8	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	2	1	÷			
Percent	3 4 5 6 6	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	2	1	÷			
Percent	3 4 5 6 1.8 Guanta	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	2	1	÷			
Percent	3 4 5 6 1.8 Guanta Estacion Guanta	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	2	1	÷	0		
Percent	3 4 5 6 1.8 Guanta Estacion Guanta 1	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	2	1	0	0		
Percent	3 4 5 6 1.8 Guanta Estacion Guanta	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	2	1	0	0		
Percent	3 4 5 6 1.8 Guanta Estacion Guanta 1 2	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	233	1	0	0		
Percent	3 4 5 6 6 1.8 Guanta Estacion Guanta 1 2 3	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	233	1	0	0		
Percent	3 4 5 6 6 1.8 Guanta Estacion Guanta 1 2 3 4	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5	233	1	0	0		
Percent	3 4 5 6 1.8 Guanta Estacion Guanta 1 2 3 4 5	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5		1	0	0		
Percent	3 4 5 6 1.8 Guanta Estacion Guanta 1 2 3 4 5 6	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5		1	0	0		
Percent	3 4 5 6 1.8 Guanta Estacion Guanta 1 2 3 4 5 6 7	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5		1	0	0		
Percent	3 4 5 6 1.8 Guanta Estacion Guanta 1 2 3 4 5 6 7 8	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5		1	0	0		
Percent	3 4 5 6 1.8 Guanta Estacion Guanta 1 2 3 4 5 6 7 8	1 1 1 5	1		1	_			1 1 5	240 128 625 378 5 100				0		

CONFIDENTIAL PET 040866

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Ŗ

1.2

1

Í

Í

4

1

4

٦

N 7

~

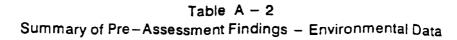
•

5

Table A - 2 Summary of Pre-Assessment Findings - Environmental Data

						Ta	ble	A –	2						
	Summ	ary	of Pi	re−A	١sse	ssm	ent	Find	ings – E	Invi	ron	mer	ntal	l Data	
		-							-						
le Identification	Data F	arbons		We	lsite		Spill 5	lecord							
					lected			yuroc		,		overs	3	(1973-9	
Field	Data	Site	Cond				Land	Use	Pit Size	90	91	92	93	Number	Volume
Number	Available	1	2	3	1	2	3	4	m2	Nu	mbe	by ye		of Spills	Barrela
Producing	-	Saa	footn	<u></u>	r haad	line d	متغدمتك							See spill reco	ord for detail
Abandoned Water Inj.	=	086				nig u								Totels exclu	de stations.
Aguarico															
Estacion															
AG1	1			1		1			100		1	· ·		1	250
AG2	1			1		1			64	1		••••			
Ag3	1	1			1				100						
AG4	<u> </u>	L	ļ											2	204
AG5															
AG6	1	1				1			225			┞──┤			
AG7	1		1		<u> </u>	1			100		<u> </u>	\vdash			
AG8 AG9	1		1				1		150					1	3
AG10	1	1					1		64 1000					1	5
	,	<u> </u>								L	<u> </u>	I		I	
	8 0	3	3	2	1	4	3	0	8	2	1	0	٥	4	462
at 3	.1 100	38	38	25	13	50	38	0	100	20	- 10	0	0		
									,		.	••		•	
hushufindi															
		•								,					
Estacion Norte														1	40
Estacion															
Estacion Sur-															
														5	515
Estacion Centr											,		-		
Estacion Centr B56	1		1				1		1000			1			
Estacion Centr B56 B57	1		1				1		900		<u> </u>	1			
Estacion Centr 856 857 859	1 1 1		1	1	1				900 100	1	1	1			
Estacion Centr 856 857 859 61	1 1 1 1 1		1	1		1			900 100 64		<u> </u>	1			
Estacion Centr 856 857 859 61 862	1 1 1 1 1 1		1	1	1	1			900 100 64 36		1				
Estacion Centr 856 857 859 61 862 863	1 1 1 1 1 1 1 1		1 1 1 1	1					900 100 64 36 800		1	1			6
Estacion Centr 856 857 859 61 862	1 1 1 1 1 1		1 1 1 1	1	1	1			900 100 64 36 800 100		1	1			6
Estacion Centr 856 857 859 61 862 863 863 864	1 1 1 1 1 1 1 1 1 1	1	1 1 1 1	1	1	1			900 100 64 36 800		1				6
Estacion Centr 856 857 859 61 862 863 864 864 864 865	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1		1	1			900 100 64 36 800 100 100		1	1			6
Estacion Centr 856 857 859 61 862 863 864 A65 866	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1		1	1			900 100 64 36 800 100 100		1	1			6
Estacion Centr 856 857 859 61 862 863 864 A65 866 A67	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1		1	1			900 100 64 36 800 100 100	1	1	1			6
Estacion Centr 856 857 859 61 862 863 863 864 A65 866 A67 68	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1		1	1			900 100 64 36 800 100 100	1	1	1			6
Estacion Centr 856 857 859 61 862 863 863 864 A65 866 A65 866 A67 68 69	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1		1	1			900 100 64 36 800 100 100	1					6
Estacion Centr 856 857 859 61 862 863 864 863 864 865 866 866 866 866 9 70 71 WiW1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1		1	1			900 100 64 36 800 100 100						6
Estacion Centr 856 857 859 61 862 863 864 A65 866 A65 866 A57 68 69 70 71 W/W1 W/W2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1		1	1			900 100 64 36 800 100 100						6
Estacion Centr 856 857 859 61 862 863 864 863 864 865 866 866 866 866 9 70 71 WiW1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1		1	1			900 100 64 36 800 100 100					ONFIDE PET 04	6

Table A – 2 Summary of Pre-Assessment Findings – Environmental Data


Site Identification	Data Fi	om E		ta col				iyaroc	arbons	Ι.		lsite over		Spill Record		
Field		0:10			1				0:0		_		_			
Field	Data		Condi 2		1	2	Land		Pit Size	90		92	_	Number	Volume	
Number	Available	1	2	3	1	۷.	3	4	m2		mber	by ye		of Spills	Barrels	
Producing = Abandoned = Water Inj. =		See	footn	ote fo	r head	ding d	efinitic	oņs.						See spill red Totals excl	xord for de ude station	
WIW6]							
WIW7																
WIW8																
A1	1		1			1			100			1			1	
A2	1		1			1			100							
A3	1	- 1						1	100							
A4													1			
A5	1	1				1				1						
A6	1		1		<u> </u>	1			64		-					
A7	1	-	1						200			-			<u>+</u>	
A8	1	1							64	1		1		1		
- <u>A0</u> A9			1			<u> </u>	1		80	├ ──		-		'		
A10	1	1				1	<u>├</u>		225					<u>}</u>	┼───	
	1	-		1		1	<u> </u>					<u> </u>		<u> </u>	<u>├</u> ──	
A11			1	├ ── <u>'</u>	<u> </u>	├ ──'			100						┣━━━	
A12	1		1		1				80							
A13	1	1				1			100							
B14	1		1		1		 		150		1				<u> </u>	
B15	<u> </u>		1	ļ	1	<u> </u>	<u> </u>		400					<u> </u>	ļ	
B15B	1		1	<u> </u>	1	 			500			<u> </u>	L	<u> </u>		
B16	1		1		1	ļ			120		<u> </u>			ļ	ļ	
A17	1	1						1	80					Ļ		
A18															<u> </u>	
A19	1		1				1		100						<u> </u>	
A20	1	1			1				64			1		1 1		
A21											1			1		
A22	1	1			1				64			1				
A22B											1	2				
A23	1		1			1			80							
A24	1	1					1		64	1		1				
A25	1		1				1				1			Γ		
A26	1		1			<u> </u>	1		100				1	1	1	
A27	1		<u> </u>	1	t —	<u> </u>	1		64	1				<u> </u>	<u>† </u>	
A28	1	1		<u> </u>	1	1	<u> </u>		64		-				1	
A29	1	· · ·		1	1	<u> </u>			64		-			1	1	
A30				1	<u>├──</u> '	1			100		-			<u> </u>		
B31			<u> </u>	 '	 .	<u>├</u>	<u> </u>			2		2		† · · · · · · · · · · · · · · · · · · ·		
	1		1		1		<u> </u>					2		<u> </u>	<u>+</u>	
<u>B32</u>					<u> </u>					<u> </u>					+	
A33				ļ	<u> </u>	ļ	<u> </u>					L		ŀ	<u> </u>	
A34					 	L					L		L	L	ļ	
A35	1		1			1				1	L	<u> </u>	L			
B36	1	1		1	ı –		1	1	100	1		1		1	1	


CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

•

CA1069615

CONFIDENTIAL PET 040868

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table A – 2 Summary of Pre-Assessment Findings – Environmental Data

Site Identification	Data F							yaroo	arbons		Wells		1	Record
				ta col		the second days of the second days				<u> </u>	Norko	/ers	(1973-9	30 Spills
Field	Data	Site	Cond		Adj	acent	Land	Use	Pit Size	90	91 9	2 93	Number	Volume
Number	Available	1	2	3	1	2	3	4	m2	Nu	mber by	∕year.	of Spills	Barrels
Producing = Abandoned = Water Inj. =	= = 		footn	ote fo		ting d	efinitic	ons.					See spill reco Totals exclu	ord for de de station
11		<u>+</u>			1				64					
12	1	1				1	<u> </u>		80			_	<u> </u>	
13	<u> </u>	<u> </u>											9	5
14	11					1			100				1	
15	1	÷				1			64	L			7	1
16	<u> '</u>	1	<u> </u>			1			100				3	
17	1					1			100				4	3
18						<u> </u>				\vdash				
19	1	1	<u> </u>			1				\vdash		_+	5	2
20	<u> </u>					<u> </u>					┝─╄-		6	
21	1	<u> </u>				1			64	<u> </u>	┝╼╼╶┟╍		2	
2	1	1				1			64	1			1	
23	<u> </u>	<u> </u>								1	┝╍┼╴			
24	1	<u> </u>	<u> </u>			1			64				2	
25	1	÷		1		1			64				2	L
26	1			1		1			64	1			2	
27	1	<u> </u>		1		1	<u> </u>	<u> </u>			└─┤			
28	<u> 1</u>	<u> </u>	1		1	<u> </u>			100	2			1	
29	1	1				1				1				
30	1		1			1			64	1		-+		
31	1		<u> </u>		1					┝		_+	3	
32	1	<u> </u>	1			1			100			_	1	
33	1								100			1		<u> </u>
34	1	<u></u>	<u> </u>			1		—	64	<u> </u>		_+_	2	
35	1	÷				<u> </u>		1	64	 			2	
36	1	<u>+</u>	<u> </u>			1			64				1	
37	1	<u> </u>	1			1							1	
38	·		<u> </u>			1			36				<u> </u>	
39	1	1				1	<u> </u>		64	<u> </u>				
40	1		 	1		├	1		64					
41	<u> </u>											_	1	
	11			1		1	<u> </u>	<u> </u>		<u></u>	┝╌┥		<u> </u>	L
43	<u> </u>	<u> </u>				<u> </u>	ļ			1		-+	<u> </u>	
44	1 1	÷	1	<u> </u>		<u></u>	<u> </u>		600	 			<u> </u>	
45	1	+		1		1			80 64	<u> </u>	-+-	-+	1	
46	1					1				<u> i</u>	┝╼╼╋╸		<u>├</u>	
47	1		<u> </u>		1				64	\vdash	┝╌╶╉╸	-+	+	
48		1			1				1000	\vdash_{\uparrow}			<u> </u>	
50	1	1	<u> </u>			1			1000	┝ ── <u></u>		-+	1	
51	+	<u> </u>				ļ						-+-		
	1	1				1			64		┝╌┥╌		1	┝───-
52	1		<u> </u>			1			1000		\vdash	-+	 	
53	1	1				1			36		┝╍╌┝╸	_+	<u> </u>	┞────
54	1	1				1	ļ					_	1	ļ
55	1 1	1				1	t i			1 '	1	1	2	1

CONFIDENTIAL PET 040870

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

) ...

4

,

.

ļ.

Table A - 2Summary of Pre-Assessment Findings - Environmental Data

. . . . - . - .

te Identification	Data F	rom E						lydroc	arbons]		llsite			Record
					ected	_				<u> </u>	_	overs	_	(1973-9	O Spills)
Field	Data	_	Cond	_			Land	Use	Pit Size	90	91		the second se	Number	Volume
Number	Available	1	2	3	1	2	_3	4	2	Nu	mbei	r by ye		of Spills	Barrels
Producing = Abandoned = Water Inj. =		See	footn	ote fo	r head	ling d	efinitic	ins.					\$	See spill reco Totals exclu	de stations.
56	1	1				1			64		1			1	50
57										—				1	8
58	1	1			1				36					4	50
59	1	1				1					—				
60	1	1				1			400				-7	5	142
61	1	1			1									1	1
62	1	1				1			1.5					2	270
63	1	1				1			36					2	80
64	1		1		1				1500	1				1	5
65	1	1				1			36			1			
66	1	1				1			400						
67	1	1				1			64					1	2
68															
69															
70	1	1				1			1000	1					
71	1	1				1			100						
72	1	1				1			1500						
73	1	1				1			1000						
74	1	1			1				900	1				1	50
75														1	50
76															
77	1	1				1			1000					1	10
78	1	1			1										
79															
80	1	1				1			1500	1				5	- 95
81														1	200
82	1		1					1	1000						
83															
84															
85															
86															
87	1		1			1			1000						L
88	1	1			1				1000	1					
89	1	1				1			1000					2	
90														1	30
91	1		1		1				80						L
92] 🗔					
93	1	1				1									
94	1	1				1			100						
95	1	1				1					[
96			· .] [T				
97															
98	1		1			1			1000	1	1]	
99	1	1	T	1	1	1		1	2500		1	1	1	CONET	DENTI/ 040871

Site	Identification	Dalari					in 198		yuix	arbons	η.	Wəl		_			Record
	F :		0:40	Condit			acent	_		Pit Size				-			90 Spill
	Field	Data	1	2	3	1	2	3	4	m2	90		92	<u> </u>	1	nber	Volun
	Number	Available		_ <u>_</u>	<u> </u>	<u> </u>	4			1112		moer	by ye	· · · · · · · · · · · · · · · · · · ·		pille	Barre ord for d
	Producing = Abandoned = Water Inj. =		See	footno	ote foi	head	ling de	finitio	ns.								ora ior a ide static
ſ	101		1					1							1		
Ì	102														<u> </u>		
ł	103	1	1			1				2500							
Ī	104	1	1				1			2500						_	
[106															_	
[107																
ļ	108							$ \rightarrow $		··				<u> </u>	ļ		
ļ	109														L		
ļ	110										1				<u> </u>		
ŀ	111										┨┝╼╾┥			<u> </u>			┣───
ŀ	112						┝		- · ·		╢┝──┥				┼──		├
	113 - 114												\vdash				├──
ŀ	114										╢╾╢				+	·	┣───
ŕ	116			- +							╢╴┧						<u> </u>
L				L			I				لنسبا ل		<u> </u>	L			L
Count	120	78	56	14	8	14	60	1	3	61	25	1	1	1	T	50	
			_					t							<u> </u>		!
Percent C	36.9 Culebra	100	72	_18	10	18	77	1	4	78] [21]	1	1	1] r		
	······································	100	72	18	10		77			78		1	1	<u> </u>] [
	Estacion	100	72	18	10	18	77			78		1		1		1	
C	Eulebra Estacion 1 2											1					
Count	Estacion 1 2 2	0	0	0	0	0	0	0	0			1	0	0		1	
C	Eulebra Estacion 1 2											1					
Count	Estacion 1 2 2	0	0	0	0	0	0	0	0			1	0	0			
Count	Estacion 1 2 2 0.6	0	0	0	0	0	0	0	0			1	0	0			
Count	Estacion 1 2 0.6 Ulebra	0	0	0	0	0	0	0	0			1	0	0			
Count	Estacion 1 2 2 0.6 /Ulebra Estacion	0	0	0	0	0	0	0	0			1	0	0			
Count	Estacion 1 2 2 0.6 Ulebra Estacion 1	0	0	0	0	0	0	0	0			1	0	0			
Count Percent Y	Estacion 1 2 2 0.6 /ulebra Estacion 1 2	0	0	0	0	0	0	0	0			1	0	0			
Count Percent Y	Estacion 1 2 2 0.6 Yulebra Estacion 1 2 3 3	0	0	0		0	0	0				1 1 50	0	0			
Count Percent Y	Estacion 1 2 2 0.6 Yulebra Estacion 1 2 3	0	0	0		0	0	0				1 1 50	0	0		1	
Count Percent Y Count Percent	Estacion 1 2 2 0.6 Yulebra Estacion 1 2 3 3	0	0	0		0	0	0				1 1 50	0	0		1	
Count Percent Y Count Percent	Estacion 1 2 2 0.6 /ulebra 1 2 3 	0	0	0		0	0	0				1 1 50	0	0		0	,
Count Percent Y Count Percent	Estacion 1 2 2 0.6 Ulebra Estacion 1 2 3 0.9 Yuca Estacion	0	0	0		0	0	0				1 1 50	0	0		1	
Count Percent Y Count Percent	Estacion 1 2 2 0.6 /ulebra Estacion 1 2 3 Ulebra Ulebra 1 2 3 0.9 YuCa 1	0	0	0		0	0	0				1 1 50	0	0		0	
Count Percent Y Count Percent	Estacion 1 2 2 0.6 Ulebra Estacion 1 2 3 0.9 Yuca Estacion	0	0	0		0	0	0				1 1 50 0 0				0	
Count Percent Y Count Percent	Estacion 1 2 2 0.6 /ulebra Estacion 1 2 3 Ulebra Ulebra 1 2 3 0.9 YuCa 1	0	0	0		0	0	0				1 1 50 0 0				0	
Count Percent Y Count Percent	Estacion 1 2 2 0.6 /ulebra Estacion 1 2 3 Ulebra Ulebra 1 2 3 0.9 YuCa 1	0	0	0		0	0	0				1 1 50 0 0				0	

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

1

CA1069619

.

Site	Identification	Data Fr	om E						lydroc	arbons		Wel			Spit	Record	٦
				-	ta coli	ected	in 19	87)				Work	over	3	(1973-	90 Spills)	
	Field	Data	Site	Condi		Adj		Land	Use	Pit Size	90	91	92	93	Number	Volume	4
	Number	Available	1	2	3_	1	2	3	4	m2	Nu	mber	by ye		of Spills	Barreta	
	Producing = Abandoned = Water Inj. =		See	footni	ote foi	r heac	ling d	efinitio	ns.						See spill red Totals exclu	ord for detai ude stations.	i.
	24	1	T						1								٦
	25										1						-
	26										1						1
		18		<i>e</i>												r	_
Count Percent	27 8.3	100	6 33	5 28	2 11	0	0		18 100	<u>11</u> 61	6 22	1			10	146	4
Percent	0.3	100	33	20					100	61	22	- 4	4				
A	uca Sur						~										
1	Estacion		-				<u> </u>	· · · · ·									٦
	1						1									<u> </u>	
	2																
	·	_ _		1							·					•	
Court	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Percent	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0			-
R	umiyacu	_															
																	_
	1																
	·						.									·····	
Count	1	0	0	0	0	0			0	0	0		0	0	0		0
Percent	0.3	0	٥	0	0	0	0	0	0	0	0	0	0	0	ł		
Ca	ononaco																
	Estacion Central																
	1	1	1			1				120							
	2	1	1				1			80	1	 		Ļ	1	50	20
	3 4	1 1	1			ļ		<u> </u>	1	1296		╂		<u> </u>	 	╂	-
	6	1	1		1	1				36		+				+	
	7		1		'	1	+	1				<u>†</u>			<u> </u>	1	
	8	1	1			<u> </u>	1	†	1	80		1				1	
	9	1		1			1			120							
	10	1	1						1	60		L					
	11	1	1						1	60		1		Γ			
	12	1	1						1	80							
	13											1					
	14											1					
														<u> </u>			2
Count	13	11	9	_	1	3										5	00
Percent	4.0	100	82	9	9	27	27	0	45	91] [15	15	0	0			
															ENTIAL 10873		

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069620

~ . A

				(Da	ta col	lected	in 198	7)			1	Nork	over	s	(1973	-90) Spills
	Field	Data	Site	Cond	ition	Adj	acent l	and	Jse	Pit Size	90	91	92	93	Numbe	_	Volume
	Number	Available	1	2	3	1	2	3	4	m2	Nu	mber	by ye		of Spill		Barrels
	Producing = Abandoned = Water Inj. =		See	footn	ote fo	r head	ing de	finitio	ns.					:	See spill i Totais ex	recon Icludi	d for det e station
	3										<u> </u>						
	4															-	
	5															-	
	6																
	9															-+-	
	10															-+-	
	12				<u>├</u> ───												
	12		L		L					J	L					<u> </u>	- <u>.</u>
Count	9	0	0	0	0	0	0	0	0	0	1	0	0	0	_	1	
ercent	2.8	0	0	0	0	0	0	0	0	0	11	0	0	0			
Y	uca Sur										_ _		I	<u> </u>			
	11		L		L	I				J	L			L			
	1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
Count	1 11										_	_		_		- 	
	0.3 Auca	0	0	0		0	0	0	0	0	0	0	0	0			
	0.3 Auca Estacion Sur		0	0		0	the second s	0	0	0	0	0	0	0	 	3	
	0.3 AUCA Estacion Sur Estacion Central		0			0	the second s	0					0	0		10	
	0.3 Auca Estacion Sur Estacion Central		0	0	0	0	the second s	0	1	400		0		0		10 2	
	0.3 AUCA Estacion Sur Estacion Central		0			0	the second s	0				0	0	0		10	
Count ercent	0.3 AUCA Estacion Sur Estacion Central				0	0	the second s	0	1	400		0		0		10 2	10
	0.3 AUCA Estacion Sur Estacion Central 1 2 3 4 5	0		1	0	0	the second s	0	1	400 100 100 400 200				0		10 2	
	0.3 AUCA Estacion Sur Estacion Central 1 2 3 4 5 6	0	1	1	0		the second s	0		400 100 100 400 200 100				0		10 2	
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7	0	1	1	0		the second s	0		400 100 100 400 200		0				10 2 2 1 1	
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8	0	1	1	0		the second s	0		400 100 100 400 200 100		0				10 2 2	
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9	0 	1		0		the second s	0		400 100 100 400 200 100 1600						10 2 2 1 1	
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10		1		0		the second s	0		400 100 100 400 200 100 1600						10 2 2 1 1	11
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9	0 	1		0		the second s			400 100 100 200 100 1600						10 2 2 1 1	11
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 11 12 13		1	1	0		the second s			400 100 100 400 200 100 1600						10 2 2 1 2 1 2	
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14		1		0		the second s			400 100 100 200 100 100 1600 80 80							
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15		1		0		the second s			400 100 400 200 100 1600 200 80 80							11
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16		1		0		the second s			400 100 400 200 100 1600 200 80 80							
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17		1		0		the second s			400 100 400 200 100 1600 200 80 80							
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		1		0		the second s			400 100 400 200 100 1600 200 80 80							
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		1		0		the second s			400 100 400 200 100 1600 200 80 80							
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19B		1		0		the second s			400 100 400 200 100 1600 200 80 80							
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19B 20		1		0		the second s			400 100 400 200 100 1600 200 80 80							
	0.3 Auca Estacion Sur Estacion Central 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19B						the second s			400 100 400 200 100 1600 200 80 80							

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

1

1 1

1

₿

ſ.

0110 100	Intification	Data F	OME						lydroc	arbons]	· We	lsite		Spill	Record
	<u> </u>					_	in 198				- I	1	over	╘	(1973-	90 Spills)
F	ield	Data		Condi		Adj	acent	Land	Use	Pit Size	90	91	92	93	Number	Volume
	Number	Available	1	2	3	1	2	3	4	m2		umbe	by ye		of Spills	Barreia
	Producing =		See	footno	nte foi	head	ioa de	finitio						5	xxe spill ra∉ Totolo omu	ord for detail. ude stations.
	Abandoned =						ing or									ude stations.
	Water Inj. =															
Du	ireno															
				T			<u> </u>	- 1			٦			ſ		T
	1										┥┍──	1				<u> </u>
L	<u> </u>										J	<u>}</u>				L
Count	1	0	0	0	0	0	0	0	0			0	o	0	0	0
Percent	0.3	0	0	0	0	0	0	0	0				0	ō		L
											نسبسا ل		· · · · ·			
Project	Summary															
Тојесс	Guinnary															
i												-	014		0	
Stations	22			tes wi			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		1		1	Spill Site	T
Wells	325	202	105	59	33	54	89	16	43	17	2 71	17	22	3	93	13710
Project	347															-
		Extracte	d from	n perc	entag	e of v	ells w	ith D	NH da	ta (202).	Pe	cent	of tot	eli we	lisites (3	as).
roject %	100.0	100	52	29	16	27	- 44	8	21	8	• Z	5	7	1	25	
		2 = 3 = Adjacent La 1 =	No sp draina Oil sta cover Exten aff-s ind Us Virgin Virgin		stem iund v isting pills o conda t and	in plac velihe spills n well ary gro planta	ce. ad, sit site, e swth fo tion.	e leve viden prest	lied, s	and spills						
				al dep												
		4 =	vægir	tores	i, rive	rs and	stea	ms.								
							-								FIDEN	TAL

Field/Area	Location	Sp	ill Dat	te	Vo	lume (Barre	ls)	Spill	Material or	Natural	Comments
Ordered	Ordered		DD	ŶŶ	Gross	Recovered	Net	Location	Equipment Used	Resource	Area Affected or
Alphabetically	Numerically							St. 1	In Cleanup	Affected by Spill	Cause of Spill
		1	<u>vote</u> :	Reco	ords were	e obtained fro	om Depar	tment of Natio	onal Hydrocarbons	s and PETROECUADO	<u>DR files.</u>
Aguarico	1	8	16	89	250	o	250	Flowline	Sand	Soil	Sabotage
Aguarico	4	4	30	77	4	0	4	Pit Failure	Not Available	Soil	None
Aguarico	4	6	7	77	8	•	• •	2 . ¹			
Aguarico	4	4	11	80	200	0	200	Flowtine	Buint	Soil	1 Ha
Aguarico	8	5	2	77	3	0	3	Flowline	Sand	Water/Soil	Entered Stream
Aguarico	9	11	10	75	5	5	0	Flowline	Vacuum Truck	Soil	Grader Cut Flowline
Aguarico	25	6	16	77	100		• • • • •				Oil Filtration From Pit to Stream
		7			570						
Aguarico River		6	23	76	610	498	112	Tank	Not Available	Water/Soil	Tank Overflow Into River - Diesel Fu
Aguarico River		7	5	79	4,725	0	4725	Pipeline	Dispersion		Enlend River
Aguarico River		6	8	87	100	0	100	Rio Aguarico	None	Not Known	Trunk Une
		3			5,435						
Atacapi	2	5	22	89	40	Shading in this	are a Indicat	es that additional	I dete le curmoth not a	vallable. Totals for recover	
									ande fie antiettigt tidt eine a	Administry . 1 mines int incodels	a shih sug uet shih sie meteore uot cenct
		1			40				, entre 18 august 194 196 4		о вршало песьршате птегерга посово.
	Centr al Sta.	<u>1</u> 5	5	76	<u>40</u> 3	0	3	Tank	Not Available	Soil	Check Valve failure
Auca (Central Sta. Central Sta.			76 84		80	20		· · · · · · · · ·	Soil Water	
Auca (Auca (5	5		3		-	Tank	Not Available	Soil	Check Valve failure
Auca (Auca (Auca (Central Sta.	5	5 13	84	3	80	20 20 10	Tank	Not Available	Soil Water Water	Check Valve failure
Auca () Auca () Auca () Auca ()	Central Sta. Central Sta.	5 2 2	5 13 13	84 64	3 100 100	80	20	Tank Flowline	Not Available Bumt/Buded	Soil Water	Check Valve failure Into Small Stream
Auca () Auca () Auca () Auca () Auca ()	Central Sta. Central Sta. Central Sta.	5 2 2 10	5 13 13 2	84 64 84	3 100 100 10	80	20 20 10	Tank Flowline	Not Available Bumt/Buded	Soil Water Water	Check Valve failure Into Small Stream
Auca C Auca C Auca C Auca C Auca C Auca C	Central Sta. Central Sta. Central Sta. Central Sta.	5 2 2 10 6	5 13 13 2 9	84 84 84 85	3 100 100 10 49	80 1945 - 1945 0 1945 - 1945 - 1945 1945 - 1945 - 1945	20 20 744 10	Tank Flowline Flowline	Not Available Bumt/Burled Bumt	Soil Water Water	Check Valve failure Into Smatl Stream 50 m2
Auca C Auca C Auca C Auca C Auca C Auca C Auca C	Central Sta. Central Sta. Central Sta. Central Sta. Central Sta.	5 2 2 10 6 3	5 13 13 2 9 11	84 84 85 89	3 100 100 10 49 50	80 1945 0 1945 1945 1945 1945 1945 1945 1945 1945	20 10 15	Tank Flowline Flowline Flowline	Not Available Bumt/Burled Bumt Vacuum Truck	Soil Water Water Water	Check Valve feilure Into Small Stream 50 m2 Flowed into Leke at Camp
Auca C Auca C Auca C Auca C Auca C Auca C Auca C Auca C	Central Sta. Central Sta. Central Sta. Central Sta. Central Sta. Central Sta.	5 2 2 10 6 3 12	5 13 13 2 9 11 16	84 84 85 89 89	3 100 100 10 49 50 12	80 1945 0 1945 1945 1945 1945 1945 1945 1945 1945	20 10 15	Tank Flowline Flowline Flowline	Not Available Bumt/Burled Bumt Vacuum Truck	Soil Water Water Water	Check Valve feilure Into Small Stream 50 m2 Flowed into Leke at Camp
Auca C Auca C Auca C Auca C Auca C Auca C Auca C Auca C Auca C	Central Sta. Central Sta. Central Sta. Central Sta. Central Sta. Central Sta. Central Sta.	5 2 2 10 6 3 12 2	5 13 13 2 9 11 16 11	84 84 85 89 89 90	3 100 100 10 49 50 12 5	80 1945 0 1945 1945 1945 1945 1945 1945 1945 1945	20 10 15	Tank Flowline Flowline Flowline	Not Available Bumt/Burled Bumt Vacuum Truck	Soil Water Water Water	Check Valve feilure Into Small Stream 50 m2 Flowed into Leke at Camp
Auca C Auca C Auca C Auca C Auca C Auca C Auca C Auca C Auca C	Central Sta. Central Sta. Central Sta. Central Sta. Central Sta. Central Sta. Central Sta. Central Sta.	5 2 10 6 3 12 2 2	5 13 13 2 9 11 16 11 24	84 84 85 89 89 90 90	3 100 100 10 49 50 12 5 1	80 1945 0 1945 1945 1945 1945 1945 1945 1945 1945	20 10 15	Tank Flowline Flowline Flowline	Not Available Bumt/Burled Bumt Vacuum Truck	Soil Water Water Water	Check Valve feilure Into Small Stream 50 m2 Flowed into Leke at Camp
	Ordered Alphabetically Aguarico Aguarico Aguarico Aguarico Aguarico Aguarico Aguarico Aguarico Aguarico Aguarico River Aguarico River Aguarico River	Ordered Ordered Alphabetically Numerically Aguarico 1 Aguarico 4 Aguarico 4 Aguarico 4 Aguarico 8 Aguarico 9 Aguarico 25 21 Aguarico River Aguarico River 3 Aguarico River 3	Ordered Ordered MM Alphabetically Numerically I Aguarico 1 8 Aguarico 4 4 Aguarico 4 6 Aguarico 4 6 Aguarico 8 5 Aguarico 9 11 Aguarico 9 11 Aguarico 25 6 21 7 7 Aguarico River 6 7 Aguarico River 6 3	Ordered Alphabetically Ordered Numerically Aguarico 1 8 16 Aguarico 1 8 16 Aguarico 4 4 30 Aguarico 4 6 7 Aguarico 4 6 7 Aguarico 8 5 2 Aguarico 9 11 10 Aguarico 9 11 10 Aguarico 25 6 16 21 7 7 Aguarico River 6 23 Aguarico River 6 8 21 3 3	Ordered AlphabeticallyOrdered NumericallyMMDDYYAlphabeticallyNumericallyNote : RecoAguarico181689Aguarico443077Aguarico46777Aguarico46777Aguarico85277Aguarico9111075Aguarico2561677Aguarico256675Aguarico River6887Aguarico River6887Tal333	Ordered Alphabetically Ordered Numerically MM DD YY Gross Aguarico 1 8 16 89 250 Aguarico 1 8 16 89 250 Aguarico 4 30 77 4 Aguarico 4 6 7 77 8 Aguarico 4 6 7 77 8 Aguarico 4 5 2 77 3 Aguarico 8 5 2 77 3 Aguarico 9 11 10 75 5 Aguarico 25 6 16 77 100 tal 7 5 79 4,725 Aguarico River 6 8 87 100 tal 3 5,435	Ordered Alphabetically Numerically MM DD YY Gross Recovered Alphabetically Numerically Numerically Numerically Note : Records were obtained from Note : Records were obtained from Aguarico Note : Records were obtain	Ordered Alphabetically Ordered Numerically MM DD YY Gross Recovered Net Aguarico 1 8 16 89 250 0 250 Aguarico 1 8 16 89 250 0 250 Aguarico 4 4 30 77 4 0 4 Aguarico 4 6 7 77 8	Ordered Alphabetically Ordered Numerically MM DD YY Gross Recovered Net Location Aguarico 1 8 16 89 250 0 250 Flowtine Aguarico 1 8 16 89 250 0 250 Flowtine Aguarico 4 4 30 77 4 0 4 Pit Failure Aguarico 4 6 7 77 8	Ordered Alphabetically MM DD YY Gross Recovered Net Location Equipment Used in Cleanup Aguarico 1 8 16 89 250 0 250 Flowline Sand Aguarico 1 8 16 89 250 0 250 Flowline Sand Aguarico 4 30 77 4 0 4 Pit Failure Not Available Aguarico 4 6 7 7 8	Ordered Alphabetically Numerically MM DD YY Gross Recovered Net Location Equipment Used In Cleanup Resource Affected by Spill Note : Records were obtained from Department of National Hydrocarbons and PETROECUADO Aguarico 1 8 16 89 250 0 250 Flowline Sand Soil Aguarico 4 30 77 4 0 4 Pit Failure Not Available Soil Aguarico 4 6 7 77 8 Aguarico 4 11 80 200 0 200 Flowline Burnt Soil Aguarico 6 5 2 77 3 0 3 Flowline Sand Water/Soil Aguarico 9 11 10 75 5 5 0 Flowline Vacuum Truck Soil Aguarico 25 6 16 77 100 Flowline Vacuum Truck Soil Aguarico River 6 23 76 610 498 112 Tank

Table A – 3 Spill Record

Table A – 3 Spill Record

Auphabetically Numerically Numerically Note : Records were obtained from Department of National Hydrocarbons and PETROECUADOR files. Auca South Sia. 11 9 76 5 0 5 Velve Failure Sand Soil None Auca 11 10 12 69 5 0 5 Velve Failure Sand Soil Hore Auca 1 10 12 69 5 0 5 Velve Failure Sand Soil Une Brei Auca 2 2 44 77 6 0 6 Flowine Burnt Soil Platter Auca 2 2 44 0 4 2 2 Flowine Band Soil Platter Auca 8 9 2 81 25 0 25 Pit None Soil In and Soil Line Accidently Auca 13 10 3 82 30 0 </th <th>ld/Area Lo</th> <th>ocation</th> <th></th> <th>ill Dat</th> <th></th> <th></th> <th>ne (Barrel:</th> <th></th> <th>Spill</th> <th>Material or</th> <th>Natural</th> <th>Comments</th>	ld/Area Lo	ocation		ill Dat			ne (Barrel:		Spill	Material or	Natural	Comments
Auca South Sta. 11 9 76 5 0 5 Velve Failure Sand Soil None Auca 1 11 18 82 1,000 0 1000 Trunk Line Burnt Soil Line Brev Auca 1 10 12 99 5 -	O berebr)rdered		DD	YY]	Gross Re	covered	Net	Location	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Area Affected or
Auca South Sta. 11 9 76 5 0 5 Valve Failure Sand Soil None Auca 1 11 16 62 1,000 0 1000 Trunk Line Bumt Soil Line Brei Auca 1 10 12 89 5	abatically Nur	merically						_				Cause of Spill
Auca 1 11 18 82 1,000 0 1000 Trunk Line Burnt Soil Line Brei Auca 1 10 12 69 5			<u> </u>	<u>vote :</u>	Reco	ords were ot	otained fro	m Depar	tment of Nati	onal Hydrocarbon	s and PETROECUAD	<u>OR files.</u>
Auca 1 10 12 89 5 Auca 2 2 4 77 6 0 6 Flowfine Sand Soli Platform Auca 2 2 24 80 4 2 2 Flowfine Absorbants Land/Soli Platform Auca 6 3 29 90 15 - <td< td=""><td>Soul</td><td>th Sta.</td><td>11</td><td>9</td><td>76</td><td>5</td><td>0</td><td>5</td><td>Valve Failure</td><td>Sand</td><td>Soil</td><td>None</td></td<>	Soul	th Sta.	11	9	76	5	0	5	Valve Failure	Sand	Soil	None
Auca 2 2 4 77 6 0 6 Flowline Sand Solit Platform Auca 2 2 24 90 4 2 2 Flowline Absorbants Land/Solit Part of Plant Auca 6 3 29 90 15 Part of Plant Auca 6 3 29 90 15 Absorbants Land/Solit Part of Plant Auca 8 9 2 81 25 0 25 Plt None Solit Mone Auca 13 10 3 82 30 0 30 Flowline Bumt Water Flowed Into Flo Auca 14 2 6 78 80 0 30 Plt Fallure Bumt Water/Solit Entered Small 4 Auca 16		1	11	18	82	1,000	0	1000	Trunk Line	Burnt	Soil	Line Break
Auca 2 2 24 90 4 2 2 Flowline Absorbente Land/Soil Part of Plant Auca 6 3 29 90 15 .		1	10	12	89	5			:			
Auca 6 3 29 90 15 Auca 8 9 2 81 25 0 25 Pit None Soil None Auca 8 4 28 64 200 150 50 Trunk Line Existing Soil Soil 50 m2 Auca 12 9 15 89 7 3 4 Flowline Sand Soil Line Accidently Auca 13 10 3 82 30 0 30 Flowline Bumt Water Flowed Into Ro Auca 14 2 6 78 80 0 80 Pit Failure Bumt Water/Soil Entered Small Auca 16 11 27 77 30 0 30 Pit Failure Bumt Water/Soil Bumt Coffee Pientation, Auca 20 1 30 90 50 0 50 Flowline Bumt Water/Soil Bumt Coffee Pientation, Auca Sta. 21 1,8		2	2	4	77	6			Flowline	Sand	Soil	Platform
Auca 6 3 29 90 15 Auca 8 9 2 81 25 0 25 Pit None Soil None Auca 8 9 2 81 25 0 25 Pit None Soil None Auca 8 4 28 84 200 150 50 Trunk Line Existing Soil Soil Line Accidently Auca 12 9 15 89 7 3 4 Flowline Send Soil Line Accidently Auca 13 10 3 82 30 0 30 Flowline Bumt Water Flowed Into Rio Auca 16 11 27 77 30 0 30 Pit Failure Bumt Water/Soil Entered Small 4 Auca 20 1 30 90 50 0 50 Flowline Bumt Water/Soil Bumt Coffee Plantation, Auca 24 15 90 50		2	2	24	90	4	2	2		Absorbants	Land/Soll	Part of Plantation
Auca 6 4 28 84 200 150 50 Trunk Line Exteting Soil Soil 50 m2 Auca 12 9 15 89 7 3 4 Flowline Send Soil Line Accidently Auca 13 10 3 62 30 0 30 Flowline Bumt Water Flowed Into Flow Auca 14 2 6 78 80 0 80 Pit Failure Bumt Water/Soil Entered Small 3 Auca 16 11 27 77 30 0 30 Pit Failure Bumt Water/Soil Entered Small 3 Auca 16 11 27 77 30 0 50 Flowline Bumt Water/Soil Bumt Coffee Plantation, Auca 20 1 30 90 50 0 50 Flowline Bumt Water/Soil Bumt Coffee Plantation, Auca Sur 5 90 50 35 15 Flowline Vacum T		6	3	29	90	15						
Auca 12 9 15 89 7 3 4 Flowline Send Soli Line Accidently Auca 13 10 3 62 30 0 30 Flowline Bunt Water Flowed into Flo Auca 14 2 6 76 80 0 80 Pit Failure Bunt Water/Soil Entered Small 3 Auca 16 11 27 77 30 0 30 Pit Failure Bunt Water/Soil Entered Small 3 Auca 17 2 25 80 12 -		8	9	2	81	25	0	25	Ph	None	Soll	None
Auca 13 10 3 82 30 0 30 Flowline Burnt Water Flowed Into Flo Auca 14 2 6 78 80 0 80 Pit Failure Burnt Water/Soil Entered Small Auca 16 11 27 77 30 0 30 Pit Failure Burnt Water/Soil Entered Small Auca 16 11 27 77 30 0 30 Pit Failure Burnt Water/Soil Entered Small Auca 17 2 25 90 12 12 14 1		· 0	4	28	84	200	150	50	Trunk Line	Existing Soil	Soll	50 m2
Auca 14 2 6 78 80 0 80 Pit Failure Bumt Water/Soil Entered Smail 3 Auca 16 11 27 77 30 0 30 Pit Failure Bumt Water/Soil Entered Smail 3 Auca 16 11 27 77 30 0 30 Pit Failure Bumt Water/Soil Entered Smail 3 Auca 17 2 25 90 12 1 10 90 50 0 50 Flowline Bumt Water/Soil Bumt Coffee Plantation, tal 24 1,811 1 3 84 60 1 16 11 3 84 60 1 16 11 3 16 15 Flowline Vacuum Truck/Sand Water/Soil Flowed Into Lake Auca Sur Sta. 2 15 90 50 35 15 Flowline Vacuum Truck/Sand Water/Soil Flowed Into Lake tal 3 11 3 84 36 146<		12	9	15	89	7	3	4	Flowline	Sand	Soll	Line Accidently Opened
Auca 16 11 27 77 30 0 30 Pit Failure Bumt Water/Soil Entered Small Auca 17 2 25 90 12		13	10	3	82	30	0	30	Flowline	Bunt	Water	Flowed Into Flo Tiputini
Auca 17 2 25 90 12 Auca 20 1 30 90 50 0 50 Flowline Burnt Water/Soil Burnt Coffee Plantation, tal 24 1,811 Auca Sur Sta. 11 3 84 60 Auca Sur Sta. 2 15 90 50 35 15 Flowline Vacuum Truck/Sand Water/Soil Flowed Into Lake Auca Sur 3 11 3 64 36 146 146		14	2	6	78	80	0	80	Pit Fallure	Bumt	Water/Soil	Entered Small Streams
Auca 20 1 30 90 50 0 50 Flowline Burnt Water/Soil Burnt Coffee Plantation, tal 24 1,811 Auca Sur Sta. 11 3 84 60 Auca Sur Sta. 2 15 90 50 35 15 Flowline Vacuum Truck/Sand Water/Soil Flowed Into Lake Auca Sur 3 11 3 64 36 10 10 10 10 tal 3 146 146 146 146 146 16 16		16	11	27	77	30	0	30	Pit Failure	Burnt		Entered Small Stream
Low Low Low Low Lal 24 1,811 Auca Sur Sta. 11 3 84 60 Auca Sur Sta. 2 15 90 50 35 15 Flowline Vacuum Truck/Sand Water/Soil Flowed into Lake Auca Sur 3 11 3 84 36 146		17	2	25	90	12						
Auca Sur Sta. 11 3 84 60 Auca Sur Sta. 2 15 90 50 35 15 Flowline Vacuum Truck/Sand Water/Soli Flowed into Lake Auca Sur 3 11 3 84 36 Main		20	1	30	90	50	0	50	Flowline	Bunt	Water/Soli	Burnt Coffee Plantation, Entered Stre
Auca Sur Sta. 2 15 90 50 35 15 Flowline Vacuum Truck/Sand Water/Soil Flowed into Lake Auca Sur 3 11 3 84 36 50 50 50 50 50 50 100			24			1,811						
Auca Sur 3 11 3 84 36										· · · · · · · · ·		
							35	15 25 A	Flowline	Vacuum Truck/Sand	vvater/Soli	Flowed Into Lake at Camp
	Sur	3	11	3	84	36						
Cononaco POC 2 3 7 84 500 0 500 Pit Erosion Bumt Water/Soli Oil Into Rio Sn Utal 1 500 500 1 500 1 500 1 <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>146</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			3			146						
	naco	<u> </u>	3	7	84	500	0	500	Pit Ero sion	Burnt	Water/Soil	Oil Into Rio Snlrypono
	ET 02	FIDE	1			500						
Culebra (00-4, 1, 10, 21, 84, 40	1087	INTI.	10	21	84	40						
	ţ,		1			40						

į

Field/Area	Location	Spi	II Dat	e	Volum	e (Barrels)		Spill	Material or	Natural	Comments
Ordered	Ordered	MM	DD	W	Gross Rec		Net	Location	Equipment Used	Resource	Area Affected or
Alphabetical	y Numerically			المنتخب			••••••	10.18639	In Cleanup	Affected by Spill	Cause of Spill
	لأسمحه	Ν	lote :	Reco	rds were ob	tained from	Depar	tment of Natio	onal Hydrocarbon	s and PETROECUAL	DOR files.
Guanta	4	1	25	87	450						
tal				[450						
Lago Agrio	Central Sta.	4	3	75	4	0	4	Pit Drainage	Not Available	Soil	Workers Opened Pit Drainage
Lago Agrio	Central Sta.	12	12	75	30	-	:				
Lago Agrio	Central Sta	4	5	76	6	0	6	Flowline	Not Available	Soil	Dam aged Valve
Lago Agrio	Central Sta.	5	12	76	· 27	0	27	Tank	Not Available	Soll	Valve left Open While Filling - Diesel
Lago Agrio	Central Sta.	6	17	76	41	-	-				
Lago Agrio	Central Sta.	8	14	77	2	0	2	Pump Fallure	Sand	Soll	100 m2
Lago Agrio	Central Sta.	9	6	79	5	•	-				
Lago Agrio	Central Sta.	- 11	17	79	9	8	1	Pump House	Existing Soli	Soll	7 m2
Lago Agrio	2	10	22	76	30	0	30	Valve Failure	Not Available	Soli/Vegetation	Valve failure on Tank
Lago Agrio	- 4	8	23	77	3	1.5	1.5	Flowline	Edating Soil/Sand	Soil	20 m2
Lago Agrio	4	10	3	77	1	0	1	Flowline	Exteting Soll/Sand	Soil	20 m2
Lago Agrio	7	1	6	77	15	0	15	Pit Failure	Not Available	Water/Soil	Overflow From Rain
Lago Agrio	7	12	24	76	15			$\{f_{i}, f_{i}\} \in \{f_{i}, f_{i}\}$		· ·	
Lago Agrio	8	10	26	76	3	0	3	Flowline	Not Available	Soll	Corrosion
Lago Agrio	8	4		77				99 - 19			Pit Full of Oil - Water Overflowing During
Lago Agrio	11	5	18	76	25	0	25	Flowline	Existing Soll/Sand	Soil	Grader Cut Flowline
Lago Agrio	118	4		77						:. · .	Platform Covered With Oil
Lago Agrio	13	3	24	78	45	0	45	Tank	Existing Soli	Soll	Accidental Valve Opening
Lago Agrio	15	10	8	76	15	0	15	Pit	Pit Filled	Soil	Filtration From Pit
Lago Agrio	15	4	:	77	es 🖗 des		, Ś.,		방송 영상 문		Pit Full of Oil - Water Overflowing Durin
Lago Agrio	17	7	27	79	15	0	15	Flowline	Not Available	Soli	Plantations & Fama
	17	4		77				. :			
Lago Agrio Lago Agrio	21	5	2	79	25	18	7	Wellhead	Gravel/Existing Soll	Water/Soll	Entered Stream
	23	9	8	79	3	0	3	Flowline	Existing Soil	Water/Soil	Entered Small Stream
j; Lego Agrio 1 Lego Agrio 2	23				-	-	-			Soll	200 m2 on Platform

Table A - 3 Spill Record

, T

Field/Area		tion		<u>III Da</u>			ime (Barrel	s)	Spill	Material or	Natural	Comments
Ordered	Orde	red	MM	DD	YY	Gross F	Recovered	Net	Location	Equipment Used	Resource	Area Affected or
Alphabetical	ly Numer	ic ally								In Cleanup	Affected by Spill	Cause of Spill
			1	Note :	: Rec	ords were (obtained fro	m Depa	rtment of Natio	onal Hydrocarbons	and PETROECUAL	DOR files.
ngo Agrio		25	6	7	77	80	0	80	Pit Failure	Sand	Soil	Unused Pits
ngo Agrio	Central	Sta.	8	6	82	60	0	60	Pit	Bumt	Soil	Around wash Tank
igo Agrio	Central	Sta.	12	19	82	10	5	5	Flowline	Existing Soli	Soll	300 m2
ngo Agrio	Central	Sta.	10	31	83	800	0	800	Pit	None	Norie	Into Pit
ago Agrio	Central	Sta.	12	21	87	40						
ugo Agrio	Central	Sta.	4	3	88	50						
ago Agrio	Central	Sta.	3	21	89	10	5	5	Flowline	Existing Soil	Soli	300 m2
ugo Agrio	Central	Sta.	3	25	90	60	40	20	Flowline	Vacuum Truck	Soil	200 m2
ngo Agrio	Central	Sta.	3	29	90	60	40	20	Flowline	Vecuum Truck	Soil	200 m2
ngo Agrio	North S	la.	5	20	81	50	0	50	Pit Failure	Bumt	Water/Soil	Entered Rio Te Te Ye
ago Agrio	North S	a.	?			5	0	5	Flowline	Editing Soll	Soil	300 Lined ? Metres
ngo Agrio		1	1	9	82	50	20	30	Flowline	Bunt	Water/Soli	600 m2, Flowed Into Stream
ago Agrio		8	1	21	81	⁻ 100	0	100	Trunk Line	Bunt	Soil	1 Ha
ago Agrio		18	4		77							Pit Full of Oil - Water Overflowing During Rain
ago Agrio	$\hat{\mathbf{c}}$	20	2	24	90	50				al de l'Arten en en L'Arten de la companya de la company L'Arten de la companya		
ago Agrio	PET	21	6	5	81	20	0	20	Wellhead	Editing Soil	Soil	Half of Location
ngo Agrio	15	22	4		77				÷			Plation & Surroundings Covered With Oil
ago Agrio		23	8	17	86	60	35	25	Flowline	Vacuum Truck	Soll	200 m2
ago Agrio	408	26	9	9	86	20			11 J.			
ago Agrio	$\sim \mathbf{H}$	26	4		77		,					"Considerable Spill"
ngo Agrio	- AO	26	9	29	86	20	0	20	Road Access	Existing Soil	Land/Soil	1 Ha
• •	•									-		
			46			1,867						
•			لي			لاستشارك						
arahuaca	Sta.		11	24	81	200	200	O	Tank	Vecuum Truck	None	None
arahuaca		1	4	8	79	4,500	2300	2200	Flowline	Existing Soli	Water/Soil	Entered Streams – 4 km e
arahuaca		4	1	24	68	20						
arahuaca		5	1	16	81	16	0	16	Not Available	Existing Soil/Sand	Soil	100 m2
!			4			4,736						
-	_	- 1		í.								and a second

CA1069626

.

							-	Table A –	3		
								Spill Recor	ď		
Field/A	rea Location	Sp	xill Da	te	Volume	(Barrels	3)	Spill	Material or	Natural	Comments
Ordere	berebiO be	ММ	DD	YY		bered	Net	Location	Egulpment Used	Resource	Area Affected or
Alphabeti	ically Numerically								In Cleanup	Affected by Spill	Cause of Spill
		1	Note	: Rec	ords were obta	ained fro	m Depar	tment of Natio		and PETROECUADO	
		•									
						·					
Sacha	Central Sta.	8 12	7	73 75	8 130	0	130	Trunk Line	Not Available	Soil	Corrosion
Sacha	Central Sta.		14	-				Flowline	Not Available	Soil	Corrosion
Sacha	Central Sta.	12	9	76	1	0	1			Soil	Corrosion
Sacha	Central Sta.	12	29	76	5	0	5	Flowline	Not Available		Corrosion
Sacha	Central Sta.	12	26	77	5	0	5	Flowline	Not Available	Water/Soil	
Sacha	Central Sta.	7	2	80	80	0	80	Pit Failure	Burnt	Soil	Bumt Corn Field
Sacha	Central Sta.	5	11	81	15				· . ·		
Sacha	Central Sta.	7	27	81	50				· · · ·		
Sacha	Central Sta.	9	14	83	60	60	0	Trunk Line	Vacuum Truck	None	None
Sacha	Central Sta.	11	6	83	30	20	10	Flowline	Bumt	Soil	50 m2
Sacha	Central Sta.	6	22	88	10			•		•	
Sacha	Central Sta.	2	21	89	80	0	80	Pit Failure	Bumt	Solf	Bumt Corn Field
Sacha	Central Sta.	4	28	90		0	80	Pit Failure	Bunt	Soil	Burnt Corn Field
Sacha	North Sta.	7	6	73		0	5	Flowline	Not Available	Soil	Corrosion
Sacha	North Sta.	2	6	76	5	0	5	Flowline	Not Available	Soll	Corrosion
Sacha	Nonth Sta.	1	19	77	Indeterminate			、		r -	
Sacha	North Sta.	6	19	80	50	0	50	Pit Failure.	Burnt	Water/Soil	Entered Rio Jiuino
Sacha	South Sta.	3	20	76	200	0	200	Pit Failure	Not Available	Water/Soil/Vegetation	Pit Overflow Into Stream - 4 Km s
Sacha	South Sta.	12	21	77	15	10	5	Tank	Editing Soll/Sand	Soil/Vegetation	50 m2
Sacha	South Sta.	7	24	79	800	300	500	Pump House	Bumt/Existing Soll	Water/Soli	Entered Stream - 100 m2
Sacha	South Sta.	7	27	61	50					·	
Sacha	Flow Line ?	6	12	81	30			vin 1997. 1997.			
Sacha	1	1	1	88	60						
Sacha	2	9	5	73	20		· · · · ·	2			
Sacha	2	9	20	73	3			· -			
Sacha	2	11	8	75	6	2	4	Flowline	Vacuum Truck	Soil	Unknown cause
Sacha Sacha Sacha Sacha Sacha	2	1	26	77	22						
Sacha	2	6	19	80							
Sacha	4	12	28	78	30				• · ·		

nā

_

2

CONFIDENTIAL PET 040880 CA1069627

- ----

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

28

Field/Area	Location	S	oll Da	te	Volu	me (Barrels)	Spill	Material or	Natural	Comments
Ordered	Ordered	MM	DD	YY	Gross R	ecovered	Net	Location	Equipment Used	Resource	Area Affected or
Alphabetically	Numerically								In Cleanup	Affected by Spill	Cause of Spill
			Note	: Rec	ords were o	obtained from	n Depa	rtment of Natio	onal Hydrocarbons	and PETROECUADO	OR files.
cha	7	7	13	75	15	0	15	Flowline	Not Available	Soll	Corrosion
cha	7	7	19	75	10	0	10	Flowline	Not Available	Soll/Vegetation	Normal Repair But Vac Truck Broker
cha	7	5	18	76	5	0	5	Flowline	Sand	Soll	Corrosion
cha	7	5	19	76	10	0	· 10	Flowline	Not Available	Soil	Corrosion, Mainly Water
cha	7	6	13	76	100	0	100	Flowline	Not Availabie	Soli	Flowtine Explosion
cha	7	12	9	77	10	8	2	Flowline	Existing Soil/Sand	Soil	100 m2 on Roadway
cha	8	12	8	74	5						
cha	9	3	19	79	30	20	10	Flowline	Existing Soil	Soil	200 m2
cha	9	7	12	79	150	0	150	Pit Failure	Bumt	Water/Soil	Entered Stream
cha	10	7	10	73	6						
cha	10	7	6	76	12	0	12	Flowline	Not Available	Soll	Corrosion
cha	10	З	19	79	40				ar An an		
cha	13	8	4	73	220						
cha	13	8	11	. 73	8	0	8	Valve Failure	Sand	Soli	Somebody Opened Valve
icha	13	8	17	73	15				10 A. C.		
icha	13	7	18	75	60						
cha	13	10	10	75	3	O	3	Flowline	Not Available	Soli	Corrosian
icha	13	10	30	75	1	0	1	Flowline	Not Available	Soli	Corrosion
icha	13	11	7	76	8	0	8	Valve Failure	Sand	Soll	Somebody Opened Valve
scha	13	4	17	78	2	O	2	Flowline	Existing Soli	Soli/Vegetation	9 m2
cha	13	12	11	87	200				-		
icha 🦯	14	2	19	76	4	0	4	Flowline	Not Available	Soil	Corrosion
icha	Q 15	- 5	12	76	2	O	2	Flowline	Not Available	Soli	Corrosion
cha T	CONFIDENTIA	8	1	76	1	0	1	Fiowline	Sand	Soit	Corrosian
icha	T 15	10	3	76	5	0	5	Wellhead	Not Available	Soil/Vegetation	Nipple Failure
icha O icha 4	D 15	1	22	78	4	0	4	Valve Fallure	Existing Soll/Sand	Soil/Vegetation	40 m2
icha — — — — — — — — — — — — — — — — — — —			22	78	5	0	5	Wellhead	Not Available	Soil/Vegetation	Nipple Failure
acha Cú	15	12	21	78	60	•				-	
acha – –	15 IS	3	19	79	40	0	40	Flowline	Sand	Soil	On Platform
acha 🕓	16	9	16	75	6	0	6	Flowline	Not Available	Soil	Corrosion

Table A – 3 Spill Record

Ordered AlphabeticallyMMDDYYGrossRecoveredNetLoeationEquipment Used in CleanupResourceArea Affected or Cause of SpillNote: Records were obtained from Department of National Hydrocarbons and PETROECUADOR files.NoteSolitCorrectorSecha163977202FlowlineNot AvailableSolitCorrectorSecha16647710010FlowlineSandSolitCorrectorSecha175317510010FlowlineNot AvailableSolitCorrectorSecha1711127515015MarifoldNot AvailableSolitCorrectorSacha177101FlowlineNot AvailableSolitCorrectorSacha177101FlowlineNot AvailableSolitCorrectorSacha177101FlowlineNot AvailableSolitCorrectorSacha1973307330SachaSolitCorrectorSacha1911884130SachaSolitOn PlatformSacha1911884130SachaSoliVegetationHeevy Equipment AcciSacha207297540040FlowlineNot AvailableSoliVege		Commente	Natural	Material or	Spill		lume (Barrels	V0	te	xill Da	S	Location	Field/Area	ſ
Alphabetically Numerically Numerically Numerically Numerically Numerically Numerically Numerically Numerically Cause of Spill Cause of Spill <th< td=""><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>· ·</td><td></td><td></td><td></td><td></td><td>{</td><td></td><td></td><td></td><td></td><td>ľ</td></th<>		· · · · · · · · · · · · · · · · · · ·		· ·					{					ľ
Note : Records were obtained from Department of National Hydrocarbons and PETROECUADOR files. Secha 16 3 9 77 2 0 2 Flowline Not Available Soil Corrosion Secha 16 6 4 77 10 0 10 Flowline Sand Soil None Secha 17 5 31 75 10 0 10 Flowline Not Available Soil Corrosion Secha 17 5 31 75 10 0 10 Flowline Not Available Soil Corrosion Secha 17 5 14 76 2 0 2 Flowline Not Available Soil Corrosion Sacha 17 7 1 0 1 Flowline Not Available Soil Corrosion Sacha 19 7 30 73 30 Sacha Soil Tank Fallure Sacha				112 C 12	Locapon	TYPEL	necovered	GIUSS	<u> </u>	00			1	1
Sacha163977202FlowlineNot AvailableSoilCorrosionSacha16647710010FlowlineSandSoilNoneSacha175317510010FlowlineNot AvailableSoilCorrosionSacha1711127515015ManifoldNot AvailableSoilCorrosionSacha1751476202FlowlineNot AvailableSoilCorrosionSacha1777101FlowlineNot AvailableSoilCorrosionSacha1777101FlowlineNot AvailableSoilCorrosionSacha1777101FlowlineNot AvailableSoilCorrosionSacha1777101FlowlineNot AvailableSoilCorrosionSacha1973307330TankNot AvailableSoilOn PlatformSacha1911884130TankNot AvailableSoilOn PlatformSacha19118601FlowlineNot AvailableSoil/VegetationHeavy Equipment AcciSacha207297540040FlowlineNot AvailableSoil/	<u>4</u>			and the second sec						Maia		Numerically	Alphabetically	
Sacha16647710010FlowineSandSoilNoneSacha175317510010FlowineNot AvailableSoilCorresionSacha1711127515015ManifoldNot AvailableSoilCorresionSacha1751476202FlowineNot AvailableSoilCorresionSacha177-101FlowineNot AvailableSoilCorresionSacha17702286300Sacha19711476303TankNot AvailableSoilCorresionSacha1911476303TankNot AvailableSoilOn PlatformSacha191147630040Valve FailureNot AvailableSoilOn PlatformSacha1911476660Sacha207297540040FlowineNot AvailableSoil/VegetationHeavy Equipment AcchSacha20117515015ManifoldNot AvailableSoil/VegetationCorrosionSacha20112275202Flowine </td <td></td> <td>H mes.</td> <td>and PETHOECUADU</td> <td>nal Hydrocaroons</td> <td>iment of Natio</td> <td>n Depar</td> <td>) obtained from</td> <td>oras were</td> <td>Heco</td> <td>NOLO</td> <td></td> <td></td> <td></td> <td></td>		H mes.	and PETHOECUADU	nal Hydrocaroons	iment of Natio	n Depar) obtained from	oras were	Heco	NOLO				
Sacha16647710010FlowineSandSoilNoneSacha175317510010FlowineNot AvailableSoilCorresionSacha1711127515015ManifoldNot AvailableSoilCorresionSacha1751476202FlowineNot AvailableSoilCorresionSacha177-101FlowineNot AvailableSoilCorresionSacha17702286300Sacha19711476303TankNot AvailableSoilCorresionSacha1911476303TankNot AvailableSoilOn PlatformSacha191147630040Valve FailureNot AvailableSoilOn PlatformSacha1911476660Sacha207297540040FlowineNot AvailableSoil/VegetationHeavy Equipment AcchSacha20117515015ManifoldNot AvailableSoil/VegetationCorrosionSacha20112275202Flowine </td <td></td>														
Sacha16647710010FlowineSandSoilNoneSacha175317510010FlowineNot AvailableSoilCorresionSacha1711127515015ManifoldNot AvailableSoilCorresionSacha1751476202FlowineNot AvailableSoilCorresionSacha177-101FlowineNot AvailableSoilCorresionSacha17702286300Sacha19711476303TankNot AvailableSoilCorresionSacha1911476303TankNot AvailableSoilOn PlatformSacha191147630040Valve FailureNot AvailableSoilOn PlatformSacha1911476660Sacha207297540040FlowineNot AvailableSoil/VegetationHeavy Equipment AcchSacha20117515015ManifoldNot AvailableSoil/VegetationCorrosionSacha20112275202Flowine </td <td></td> <td>Corrosion</td> <td>Soll</td> <td>Not Available</td> <td>Flowline</td> <td>2</td> <td>0</td> <td>2</td> <td>77</td> <td>9</td> <td>3</td> <td>16</td> <td>Sacha</td> <td></td>		Corrosion	Soll	Not Available	Flowline	2	0	2	77	9	3	16	Sacha	
Sacha175317510010FlowlineNot AvailableSoilCorrosionSacha1711127515015ManifoldNot AvailableSoilCorrosionSacha1751476202FlowlineNot AvailableSoilCorrosionSacha177-101FlowlineNot AvailableSoilCorrosionSacha17102286300Sacha197307330Sacha1911476303TankNot AvailableSoilOn Plather BallureSacha1911884130Sacha1911884130Sacha1911884130Sacha1917560Sacha207297540040FlowlineNot AvailableSoil/VegetationHeavy Equipment AccidSacha20117515015ManifoldNot AvailableSoil/VegetationCorrosionSacha2012		None												
Sacha1711127515015ManifoldNot AvailableSoilCorrosionSacha1751476202FlowlineNot AvailableSoilCorrosionSacha177-101FlowlineNot AvailableSoilCorrosionSacha17102286300Sacha197307330Sacha1911476303TankNot AvailableSoilCorrosionSacha191197640040Valve FailureNot AvailableSoilOn PlatformSacha1911884130Sacha1911884130Sacha1911884130Sacha191248560Sacha1917540040FlowlineNot AvailableSoil/VegetationHeavy Equipment Accid										31				
Sacha1751476202FlowlineNot AvailableSollCorrocionSacha17710101FlowlineNot AvailableSoilCorrocionSacha17102286300Sacha1977207330Sacha1911476303TankNot AvailableSoilTank Fallure-Sacha191197640040Valve FallureNot AvailableSoilOn PlatformSacha1911884130Sacha1911248560Sacha1911248560Sacha207297540040FlowlineNot AvailableSoil/VegetationHeevy Equipment AccidSacha20917515015MantibidNot AvailableSoil/VegetationCorrosionSacha20121175101FlowlineNot AvailableSoilCorrosionSacha20121175101Flowline <t< td=""><td></td><td>Corrosion</td><td></td><td></td><td>Manifold</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Corrosion			Manifold									
Sacha177101FlowlineNot AvailableSoilCorrosionSacha17102266300		Corrosion												
Sacha17102286300Sacha197307330Sacha1911476303TankNot AvailableSoilSacha191197640040Valve FailureNot AvailableSoilOn PlatformSacha1911884130 </td <td></td>														
Sacha1973073307330Sacha1911478303TankNot AvailableSoilTank FailureSacha191197640040Valve FailureNot AvailableSoilOn PlatformSacha1911884130Sacha191248560Sacha207297540040FlowlineNot AvailableSoil/VegetationHeavy Equipment AccidSacha20917515015MantioldNot AvailableSoil/VegetationCorrosionSacha20112275202FlowlineNot AvailableSoil/VegetationCorrosionSacha201175101FlowlineNot AvailableSoil/VegetationCorrosionSacha20121175101FlowlineNot AvailableSoilCorrosion		¢		:					86	22				
Sacha1911476303TankNot AvailableSoitTank FailureSacha191197640040Valve FailureNot AvailableSoitOn PlatformSacha1911884130Sacha191248560Sacha207297540040FlowlineNot AvailableSoit/VegetationHeavy Equipment AccidSacha207297515015MantioldNot AvailableSoit/VegetationCorrosionSacha20112275202FlowlineNot AvailableSoitCorrosionSacha20121175101FlowlineNot AvailableSoitCorrosion													Sacha	
Sacha1911884130Sacha191248560Sacha207297540040FlowlineNot AvailableSoll/VegetationHeavy Equipment AccidSacha20917515015ManifoldNot AvailableSoll/VegetationCorrosionSacha20112275202FlowlineNot AvailableSoilCorrosionSacha20121175101FlowlineNot AvailableSoilCorrosion		Tank Failure	Soll	Not Available	Tenk	3	0	3	78	4	11	19	Sacha	
Sacha191248560Sacha207297540040FlowlineNot AvailableSoll/VegetationHeavy Equipment AccidSacha20917515015ManifoldNot AvailableSoil/VegetationCorrosionSacha20112275202FlowlineNot AvailableSoilCorrosionSacha20121175101FlowlineNot AvailableSoilCorrosion	1	On Platform	Soll	Not Available	Valve Fallure	40	0	40	76	9	11	19	Sacha	
Sacha191248560Sacha207297540040FlowlineNot AvailableSoll/VegetationHeavy Equipment AccidSacha20917515015ManifoldNot AvailableSoil/VegetationCorrosionSacha20112275202FlowlineNot AvailableSoilCorrosionSacha20121175101FlowlineNot AvailableSoilCorrosion				:				130	84	8	11	19	Sacha	
Sacha20917515015ManifoldNot AvailableSoil/VegetationCorrosionSacha20112275202FlowlineNot AvailableSoitCorrosionSacha20121175101FlowlineNot AvailableSoitCorrosion														
Sacha 20 11 22 75 2 0 2 Flowline Not Available Soil Corrosion Sacha 20 12 11 75 1 0 1 Flowline Not Available Soil Corrosion	Accident	Heavy Equipment Acci	Soll/Vegetation	Not Available	Flowline	40	O	40	75	29	7	20	Sacha	
Sacha 20 12 11 75 1 0 1 Flowline Not Available Soil Corrosion		Corrosion	Sol/Vegetation	Not Available	Manifold	15	0	15	75	1	9	20	Sacha	
		Carrosian	Soll	Not Available	Flowline	2	0	2	75	22	11	20	Sacha	
		Corrosion	Soll	Not Available	Flowline	1	0	1	75	11	12	20	Sacha	
Sacha 20 5 19 76 10 0 10 Flowine Sand Soli Corrosion		Corrosion	Soll	Sand	Flowline	10	0	10	76	19	5	20	Sacha	
Sacha 20 3 3 77 10 0 10 Flowline Not Available Soli None		None	Soll	Not Available	Flowline	10	0	10	77	3	з	20	Sacha	
Sacha 21 5 13 76 20 0 20 Trunk Line Sand Soli Corrosion – 5 to 6 day	Jay Lesk	Corrosion - 5 to 6 day	Soll	Sand	Trunk Line	20	0	20	76	13	5	21	Sacha	
Sacha 21 9 24 76 20 0 20 Flowline Not Available Soli Corrosion		Corrosion	Soll	Not Available	Flowline	20	0	20	76	24	9	21	Sacha	
Secha 22 1 26 77 12 0 12 Valve Failure Sand Water/Soli Entered Small Strea	ream	Entered Small Stree	Water/Soll	Sand	Valve Failure	12	0	12	77	26	1	22	Sacha	
Secha 24 12 2 74 15				11 L I	÷.			15	74	2	12	24	Secha	
Sacha 24 5 13 76 20 . O 20 Flowline Not Available Soll Corroelon		Corrosion	Soll	Not Available	Flowline	20	. 0	20	76	13	5	24	Sacha	
Sacha 25 6 29 75 6 0 6 Wellhead Not Available Soll Nipple Failure	•	Nipple Fallure	Soll	Not Available	Wellhead	6	0	6	75	29	6	25	Sacha	
Sache 25 B 19 75 2 0 2 Wellhead Not Available Soil Nipple Failure	•	Nipple Failure	Soil	Not Available	Wellhead	2	0	2	75	19	8	25	Sacha) I
Seche 26 8 22 75 2 0 2 Flowline Not Available Soll Corrosion		Corrosion	Soll	Not Available	Flowline	2	0	2	75	22	8	26	Sacha	2
Sacha 26 9 8 75 5 0 5 Flowline Not Available Soli Corrosion		Corrosian	Soli	Not Available	Flowline	5	0	5	75	8	θ	26	Sacha	η
Sacha25B1975202WeilheadNot AvailableSoilHippe FailureSacha2682275202FlowlineNot AvailableSoilCorrosionSacha26875505FlowlineNot AvailableSoilCorrosionSacha281017930CorrosionCorrosionCorrosionSacha3112137420CorrosionCorrosionSacha31103075202FlowlineNot AvailableSoilCorrosionSacha31103075202FlowlineNot AvailableSoil			۰. ۱					30	79	1	10	28	Sacha	2
Z Sacha 31 12 13 74 20			· .	• 6.1 •	· ·	•			74	13	12	31	Sacha	Z
Sacha 31 10 30 75 2 0 2 Flo Mine Not Available Soli Corrosion		Corroslan	Soli	Not Available	Flo vilne	2	0	2	75	30	10	31	Sacha	-
			, · · ·											2

Table A – 3 Spill Record

CA10
9630

Field/Area	Location	Sp	xill Da	te	Volu	me (Barrels	5)	Spill	Material or	Natural	Comments
Ordered	Ordered	MM	DD	YY	Gross R	ecovered	Net	Location	Equipment Used	Resource	Area Affected or
lphabetically	Numerically								In Cleanup	Affected by Spill	Cause of Spill
<u>, </u>			Note	: Reco	ords were o	btained from	m Depa	rtment of Natio	onal Hydrocarbons	and PETROECUADO	
acha	31	12	21	76	1	0	1	Flowline	Not Available	Soil	Corrosion
acha	31	?		•	8	0	8	Flowline	Vacuum Truck	Soll	Corrosion
acha	32	4	13	89	228	/ 135	93	Flowline	Sand	Soil	300 m2, Someone Stole Part of Line
acha	34	9	30	75	3	0	. 3	Weilhead	Not Available	Solt	Corrosion
acha	34	5	3	90	40	0	40	Flowline	Bumt	Land	Heavy Equipment Accident
acha	35	12	8	74	3			· · ·			
acha	35	12	6	75	30			· · · ·			
acha	36	9	17	77	10	3	7	Valve Failure	Sand	Soll	16 m2 on Platform
acha	37	2	26	76	15	5	10	Pit Faikure	Vacuum Truck	Soil	Pit Overflow
acha	40	12	15	77	30	0	30	Weilhead	Bumt/Send	Soll	On Platform
lacha	41	10	5	77	200	180	20	Pit Feilure	Bumt	Water/Soil	Entered Small Stream
acha	45	6	3	75	15	0	15	Pit Failure	Not Available	Water/Soll/Vegetation	1 Ha, Entered River
lacha	46	1	11	81	50	0	50	Flowline	Bumt	Water/Soil	Entered Stream
acha	49	4	14	77	40	40	0	Flowline	Not Available	Soil	Line Corrosion
iacha	51	12	15	74	50						
iacha	54	3	26	81	40	0	40	Flowline	Burnt/Existing Soil	Water/Soil	1 Ha, Entered Adjacent Rio
lacha	55	11	6	76	20	0	20	Filtration From I	sand	Soli/Vegetation	Filtration From Pit
acha	55	3	14	83	50	0	50		Editing Soll	50 m2	
	56	12	17	76	50	0	50	Pit Failure	Not Available	Water/Soll	Entered Stream Through Filtration
iacha Iocha	57	9	25	75	8	Ū					
iacha iacha	- 58	2	19	76	10	0	10	Flowline	Not Available	Soil/Vegetation	Corrosion
	C 59	2	19	76	30	0	30	Flowline	Not Available	Soil	Согговал
acha 10	0 58 Z 58	6	30	76	5	c	5	Flowline	Bumt/Existing Soll/Se	Soll	60 m2
	171,	10	6	70	5	0	5	Flowline	Not Available	Soil	Corrosion
iacha i		5	19	76	20	0	20	Flowline	Not Available	Soil	Corrosion
iacha I	52 0	5	19	76	20	0	20	Flowline	Vacuum Truck	Water/Soll	Entered River
acha d	58 68 68 68 68 68 68 68 68 68 68 68 68 68	5 8		76 76	20	0	20	Flowline	Not Available	Soll	Corrosion
iacha			16 20	76 76	2 80	0	80	Trunk Line	Not Available	Water/Soil/Vegetation	Corrosion, Entered Stream
		12 1	20 19	70 77	20	0	20	Flowline	Not Available	Soll	Corrosian
Bacha	. 60 60	1	19 21	77	20 20	0	20	Flowline	Not Available	Water	Entered River
Sacha	UG	. '	21	**	E.A.	-					

Table A – 3 Spill Record

-												
t l	Field/Area	Location	S	oill Da	te	Vo	ume (Barrels	3)	Spill	Material or	Natural	Comments
í¦ –	Ordered	Ordered	MM	DD	YY	Gross	Recovered	Net	Location	Equipment Used	Resource	Area Affected or
	Alphabetically	Numerically								In Cleanup	Affected by Spill	Cause of Spill
				Note	: Rec	ords were	obtained from	m Depa	nment of Natio	nal Hydrocarbons	s and PETROECUADC	DR files.
-												
1												
í	Sacha	61	8	2	76	1	0	1	Choke Failure	Not Available	Soil	Nipple failure
2	Sacha	62	4	21	79	110	0	110	Not Available	Sand	Soil	Bumt Plantation - 1 Ha
3	Sacha	62	- 4	21	79	160	0	160	Pit Failure	Sand	Soil	1 Ha
í	Sacha	63	5	15	77	20	•					
5	Sacha	63	2	1	87	60	0	60	Flowline	None	Soil	100 m2
	Sacha	64	12	25	77	5	3	2	Valve Failure	Sand	Soil	100 m2 on Platform
	Sacha	67	9	19	73	2				in the second		
i	Sacha	74	4	10	78	50	40	10	Flowline	Bumt/Existing Soli	Soll/Vegetation	Around Platform
	Sacha	75	12	8	87	50						
	Sacha	77	5	28	81	10	0	10	Flowline	Existing Soli	Soil	100 m2
	Sacha	80	2	14	79	20	0	20	Flowline	Bumt	Land/Soll	2000 m2
	Sacha	80	9	5	79	20	0	20	Flowline	Burnt	Soll	None
	Sacha	80	9	12	79	15	0	15	Flowline	Bumt	Water/Soll	Entered Small Stream
	Sacha	80	9	22	79	10			•	tan an a		
	Sacha	80	10	4	79	30	o	30	Flowline	Not Available	Water/Soll	Entered Samli Stream
	Sacha	81	6	18	85	200	0	200	Flowline	Bunt	Water/Soil	0.5 Ha
	Sacha	89	1	з	79	100	50	50	Flowline	Edating Soli	Land/Soil	100 m2
	Sacha	89	8	19	80	150	120	30	Flowline	Edeting Soll	Soil	250 m2
	Sacha	90	3	14	83	300	0	300	Flowline	Existing Soli	Land/Soil	1 Ha
	Total		138			6,188						
	Shushufindi	10,11,31	12	7	82	650	650	0	Access Road	Vecuum Truck	Soll	100 m2
	 Shushufindi 	Central Sta.	4	4	76	7				in de la service de la serv La service de la service de	, ,	
	つの Shushufindi ニーマン Shushufindi	Central Sta.	3	21	77	3	0	3	Tank	Not Available	Soil	Tank Overflow
	Shushufindi	Central Sta.	11	14	77.	150	145	5	Tank	Existing Soll/Sand	Soll	500 m 2 – Dyke Dam a ged
		Central Sta.	2	10	78	15	O	15	Tank	Existing Soil	Soil	40 m2
0	OB Shushufindi 4 III Shushufindi 8 II Shushufindi 8 II Shushufindi	Central Sta.	12	4	86	327	222	105	Turbine House	Vacuum Truck	None	None
<u>P</u>	⊙Z ∞ −i Shushufindi	Station	1			20	O	20	Tank	Not Available	Soll	Tank Dyke Failure
6	00 H C D Shushufindi	North Sta.	4	23	69	40	36	4	Flowline	Sand	Soit	500 m2
CA106963	r ~- '											

Table A - 3 Spill Record

CA1069631

Table A – 3 Spill Record

!

Field/Area	Location	Sp	ill Dat	e	Vo	blume (Barrel	s)	Spill	Material or	Natural	Comments
Ordered	Ordered	MM	DD	W	Gross	Recovered	Net	Location	Equipment Used	Resource	Area Affected or
Alphabetically	Numerically	•							In Cleanup	Affected by Splil	Cause of Spill
		1	Note :	Reco	ords wer	e obtained fro	m Depai	tment of Natio		and PETROECUADO	
		-									
Shushufindi	South Sta.	7			10	0	10	Tank	Not Available	Soll	Did Not Turn Purn p Off
Shushufindi	8	10	8	77	30	25	5	Fiowline	Vacuum Truck	Soil	20 m2
Shushufindi	20	6	27	76	1	0	1	Trunk Line	Vecuum Truck	Soll	Truck Hit Pipeline
Shushufindi	21	7	11	77	500	0	500	Choke Failure	Sand	Soil	Platform Area
Shushufindi	26	10	19	75	10	0	10	Flowline	Not Available	Soil	Line Test
Shushufindi	51	6	16	77	6	0	6	Pit Failure	Not Available	Sol	None
Shushufindi	57	?			6	0	6	Tank	Pushed Into Sump	Soil	Discharge Hose Dropped Off Tank
Shu shufin di	· 64	4	5	78	60	48	12	Flowline	Sand	Soil	0.1 Ha
otal		16		l	1,835	· .					
Yuca	Sta.	4	14	89	40						
Yuca	1	5	25	80	540	285	255	Not Available	Editing Soli	Water/Soli	200 m2
Yuca	1	4	14	89	40	20	20	Flowline	Sand/Burnt	Soil	200 m2
		3		ſ	620						
otal	2	<u> </u>		1							
Yuca Sur		6	17	89	10		1.5		e de la composition	e server e	
<u>'</u>	Ĩ			,							
otal	AFIDENTIAL 040885	_1		l	10						
	0817		40	~~	20						
Yuca Town	JUP	1 7	13 20	90 90	30 15			· .			
Yuca Town	• /	ſ	£U	30	ن ا						
otal		2		(45						
irand Total		251			24,293	NA	NA				
1								<u></u>			
											and a second s

APPENDIX B

FACILITY AUDIT PROTOCOLS

.

CONFIDENTIAL PET 040886

A G R A Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

•

â

:

11

1

-9

CA1069633

PRIVILEGED AND CONFIDENTIAL WORK PRODUCT

PETROECUADOR-TEXACO SITE ASSESSMENT AND FACILITY AUDIT

INTERNATIONAL ENVIRONMENTAL AUDIT PROTOCOL AND FIELD NOTES

Facility:	
Location:	
Date Audited:	

PREPARED FOR:

PETROECUADOR-TEXACO CONSORTIUM

PREPARED BY:

HBT AGRA Ltd.

CONFIDENTIAL PET 040887

CONFIDENTIALITY STATEMENT

This is an internal document, prepared by HBT AGRA and its technical consultants, AGRA Earth & Environmental International Limited, for their own use.

The information contained in this document is confidential and proprietary in nature, and is to be used in conjunction with other facts and data for the sole purpose of providing advice concerning potential environmental liabilities.

1

CA1069635

TABLE OF CONTENTS

			Page
PAF	RT A PRODUC		. 3
1.	GENERAL I	INFORMATION	. 3
2.	FACILITY [DESCRIPTION	. 5
3.	SITE HISTO	DRY	. 8
4.	SITE CHAR	RACTERISTICS	. 10
5.	AIR EMISS	ions	. 15
6.	WATER / V	WASTEWATER DISCHARGES	. 18
7.	WASTE HA	ANDLING, STORAGE, TRANSPORTATION, AND DISPOSAL	. 25
8.	MATERIAL	HANDLING AND STORAGE	. 30
9.	STORAGE	TANKS	. 32
10.	USE/DISPO	SAL OF PRODUCED GAS	. 34
11.	CONTAINM	MENT AND CONTROL OF CRUDE OIL SPILLS	. 36
12.	RADIOACT	IVE MATERIALS	. 39
13.	NOISE	· · · · · · · · · · · · · · · · · · ·	. 41
14.	DISPOSAL	OF PRODUCED WATER	. 43
15.	DISPOSAL	OF TANK BOTTOMS AND RESIDUAL OIL	. 45
PAF	RT B WELL SI	TE MANAGEMENT	. 47
PAF	RT C PIPELINE	MANAGEMENT	. 51
APF	PENDIX A	ENVIRONMENTAL AUDIT FINDINGS FORM	
APF	ENDIX B	MASTER AUDIT CHECKLIST	

!}

]4

.

) '

8 4

Ĩ,

11

.:

CA1069636

PART A PRODUCTION FACILITY MANAGEMENT

1. GENERAL INFORMATION

1.1	Facility Name:	
1.2	Field Name:	
1.3	Mailing Address:	
1.4	Telephone:	
1.5	Telex / TWX / Fax:	
1.6	Dates Audited:	
1.7	Auditors/Affiliation:	
1.6	Facility Manager:	Current:
		Pre 1990:
1.7	Individual(s) Responsible for Health, Safety & Environmental Affairs:	Current:
		Pre 1990:
1.8	Audit Contact:	Current:
		Pre 1990:
1.9	Individuals consulted as part of this facility audit process, including their affiliation, titles, and subject matter discussed:	

1

ļ

CA1069637

CORF

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069637

3

SUMMARY OF ATTACHMENTS OBTAINED

 Site layout map with buildings, storage tanks, chemical and waste storage areas identified.

Yes 🛛 🛛 No 🗆

.

• Area map (municipality or local area) showing site location and proximity to towns, rivers, residences, etc.

Yes 🛛 🛛 No 🗖

• Photographs - general photographs of site and detailed photographs illustrating potential concerns.

Yes 🗆 No 🗆

(as available)

- Site history (previous activities of environmental concern)
- Bulk and Drum Chemical Storage Inventory
- (Copies of Environmental, Health and Safety Permits)
- Documentation of Emergency Prevention/Response Plan
- Copy of Company Environmental Policy

List of Interviews

- Site and corporate personnel
- Local, regional or national authorities

CONFIDENTIAL PET 040891

	FACILITY DESCRIPTION		
2.1	Total Site Area:	Current:	
		Pre 1990:	
2.2	Describe the Following:		
	Volume of Oil and Gas Processed at this facility:	Current:	
		Pre-1990:	
	Pocess to refine raw product:	Current:	
		Pre-1990:	
	Types of chemicals used in the refining process:	Current:	
		Pre-1990:	
	Chemical Storage area configuration	Current:	
		Pre-1990:	
	Number of underground storage tanks, volume and	Current:	
	contents:	Pre-1990:	<u></u>

CA1069639

ľ

2.	FACILITY DESCRIPTION	
	Oil sludge waste treatment method	Current:
		Pre-1990:
	Sewage Treatment:	Current:
		Pre-1990:
	Product Storage Tanks and areas:	Current:
		Pre-1990:
	Other (treater, line pigging areas, compressors etc.)	Current:
		Pre-1990:
2.3	List Chemicals used:	Current:
		Pre-1990:
2.4	Briefly describe operations, where applicable: Production Processes,	Current:
	Transport, Power Source	Pre-1990:

_ ..

-

1

4 3

1

į

4

...

-9

. _

CA1069640

-

2.	FACILITY DESCRIPTION	
2.5	ls sewage effluent: a) sent to a municipal system; or	Current:
	b) treated on-site?	Pre-1990:
2.6	When sewage effluent was treated on-site, was the treatment consistent with	Current:
	regulatory and company standards?	Pre-1990:
2.7	Are all waste oils and toxic wastes disposed of via appropriate practices, or to	Current:
	approved facilities?	Pre-1990:
2.8	Is landfilled solid waste disposed of on-site or at off- site dumps?	Current:
÷.		Pre-1990:
2.9	Are solid camp wastes incinerated?	Current:
		Pre-1990:

CA1069641

CONFIDENTIAL PET 040894 Į

3. SITE HISTORY

3.1 List any changes, refitting, or additions to the operations and product handling at the facility since to 1990.

3.2 Trace the history of the site and plant facility prior to 1990. Include dates, occupants, uses, and known or suspected environmental problems, including spills, former lagoons, tank storage areas, etc.

Section of the Facility	Type of Change or Addition to the Process	Dates	Environmental Concerns
eg. Sulphur Extraction	Sour Gas Processes	1970 to 1973	
,			

3.3 Describe plant construction and reclamation practices and any alterations to site topography since 1990.

8

3.4 Provide a site map and any historical or current aerial photographs which depict the site and its surroundings.

Building Name or Description	Dates Built and Demolished	Function

3.5 Describe the age and use of any current or previously existing structures on site.

3.6 Describe previous site use(s) of any chemicals, pesticides or hazardous substances.

Chemical	Amount Used	Type of Process
· ·		

3.7 Include/review floor plans of any historical operations and structures, underground storage tanks for sewers, floor drains, chemical storage, water wells, cisterns, and piping to lagoons etc.

CA1069643

3

τ

4.1	Describe Area Topography	
1.2	Describe Area Meteorology	
. 2	- Direction of prevailing wind - dry season, monsoon	
	- Air temperature (maximum / minimum)	
·	- Annual mean precipitation	
	- Is the area subject to periodic climatic inversions?	
_	- Is the area known for air pollution?	
	- Is the area subject to earthquakes, hurricanes, tornadoes, or any unusual weather patterns?	
surrounding lan	Adjacent Land Uses - Describe surrounding land usage (urban, suburban, industrial, rural).	Current:
		Pre-1990:
	- Identify neighbouring facilities and type of industries within a two kilometre radius (eg. plantation)	Current:
		Pre-1990:

--

-

CA1069644

	- State size and locations of nearest residential communities, upwind and downwind.	Current:
		Pre-1990:
	- Locations of any schools, hospitals, child care facilities, churches, railway stations, nursing or	Current:
	convalescent homes within 5 kilometres of the facility.	Pre-1990:
	- Locations of any parks, natural areas, wetlands, or critical habitats within 5 kilometres of the facility.	Current:
		Pre-1990:
	- Locations of nearest police, fire and emergency response teams.	Current:
	·	Pre-1990:
	- Location of nearby conservation areas including heritage sites.	Current:
		Pre-1990:
4.4	Soils/Geology	
	- Is the facility located on or near an active volcanic area?	
	- Has there been any seismic activity in the area in the last 100 years?	

	- Describe on-site soils. Have borings ever been made? Give date and results if available.	
	- Has fill ever been brought to the site? Describe fill operations (including source of fill brought to the site and fill location as well as fate of fill removed from site) etc.	
	- Define and describe site geology from the surface down to bed-rock.	
	- Have soil and/or groundwater samples ever been taken by the plant or by the Authorities?	Current:
		Pre-1990:
	- Are you aware of any surface or subsurface soil contamination in the immediate area?	Current:
		Pre-1990:
4.5	Groundwater/Hydrogeology	
	- Depth to and direction of flow of groundwater.	
	- Depth to and direction of flow in usable uppermost aquifer.	
	- Location, number, and use of any on-site water wells.	
	Depths and pumping rates?	
	- Analytical data?	

CONFIDENTIAL PET 040899

í

2

1

1

••

1

-1

1

Ĩ

ų.

\$

۹

ł

4

ł

1

CA1069646

		
	- Are water wells cased? To what depth?	
	- Describe groundwater use within a 5 kilometre radius of facility (municipal or residential drinking water; irrigation for food/non-food crops; stock watering; commercial or industrial; not used).	
	- Location, direction, population served, and aquifer depth of nearest downgradient private and/or municipal wells.	
	- To where does groundwater discharge ie, stream, wetland, etc.?	
	- State any known or suspected local, <u>off-site</u> groundwater contamination?	

Have any of the above groundwater characteristics changed since 1990?

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

- ---- -

CA1069647

CONFIDENTIAL PET 040900

CA1069647

13

4.6	Surface Water	
	- Is the site located in a flood plain? Any flooding ever recorded? Results? Actions taken?	
	 Are there any critical habitat on site or in proximity? 	
	 Identify (name, location, and distance) of all surface water bodies within three miles of the facility. 	
	 Identify any discharges (known or suspected) to surface water from the property/facility. 	Current:
		Pre-1990:
	- Location(s) of ditches, dry stream beds, storm sewers, cuts, or swales within 500 feet of the site and which might receive plant runoff.	Current:
		Pre-1990:
	- Are any surface water bodies contaminated by <u>any</u> source in the area?	Current:
		Pre-1990:
	- How is rainwater/storm water handled on site, and where does it flow to?	Current:
		Pre-1990:

-

•

.

ì

!

Å

ł

. 4

5.			
5.1	Identify any National atmospheric emission laws or regulations applicable to this facility. Collect	Current:	
	copies of permits.	Pre-1990:	
5.2	Identify notification requirements for reporting abnormal (routine or sudden) emissions.	Current:	•
		Pre-1990:	
5.3	Total number of plant emission sources (stacks and vents) exhausting to the atmosphere. Note history of changes to emission sources.	Current:	
		Pre-1990:	
5.4	Describe frequency and scope of any air emission monitoring programs, whether required by law or voluntary. Review.	Current:	
		Pre-1990:	
5.5	Has the facility been in compliance with permissible emission standards?	Current:	
		Pre-1990:	
5.6	Presence of detectable odours, solid particulates, liquid droplets or mist in air:	Current:	
	- within buildings	Pre-1990:	

	- outside buildings, but within plant property limits	Current:
		Pre-1990:
	- outside plant property	Current:
		Pre-1990:
5.7	5.7 Distance, location in relation to site, and nature of other area sources of air pollution.	Current:
		Pre-1990:
5.8	Nature and frequency of neighbour complaints;	Current:
		Pre-1990:
	- plant action in response	Current:
		Pre-1990:
5.9	Has the plant had standardized response procedures to accidental releases and to neighbour	Current:
	complaints?	Pre-1990:
5.10	History of any abnormal emission incidents?	Current:
		Pre-1990:

CONFIDENTIAL PET 040903

an-ci

.

,

.

. 대 주 :

.

٠

4

5.11	Nature of any fugitive emissions on site and steps taken to control same.	Current:
		Pre-1990:
5.12	5.12 List all air pollution violation notices, such as warnings (verbal or written), citations, fines, or informal meetings, and/or	Current:
	enforcement action proceedings taken against this facility in the last three years, the reason(s) for each, and their current status.	Pre-1990:

5.13 List all regulatory agencies with which the plant deals on air pollution matters. Attach copies of permits.

Name of Agency	Address	Contact Person	Telephone	
				-
				-

17

CA1069651

6. 1	6. WATER / WASTEWATER DISCHARGES		
6.1	6.1 Describe all sources of process, and potable water use. Do quality data exist for these sources? Review.	Current:	
		Pre-1990:	
6.2	6.2 Identify source of plant drinking water.	Current:	
		Pre-1990:	
6.3	Describe any drinking water contamination in past or present.	Current:	
		Pre-1990:	
	Does plant drinking water meet national standards? UNEP standards?	Current:	
		Pre-1990:	
6.4	Describe all sources and volumes of wastewater.	Current:	
		Pre-1990:	
6.5	Review available wastewater quality data.	Current:	
		Pre-1990:	

- ---- --- ----

1

ų,

٠

1 1 1

4

ŧ

.

₹ \$

.

4

.

CONFIDENTIAL PET 040905

6.6	Is the wastewater collection system combined (process + sanitary + storm)?	Current:
		Pre-1990:
	- Continuous	Current:
		Pre-1990:
	- Batch	Current:
		Pre-1990:
	- Both	Current:
		Pre-1990:
6.7	Provide and describe the results of any bioassay testing of wastewater for toxicity.	Current:
		Pre-1990:
6.8	Does waste water from floor washings and liquids collected from spills and leaks in plant buildings (around pumps, vessels, etc.), flow through the waste water treatment and disposal system?	Current:
		Pre-1990:

CONFIDENTIÂL PET 040906

CA1069653

19

6.9	Does runoff water from non- process areas collected in drains, ditches, troughs and other run-off collection systems flow into a tank or ponds?	Current:
		Pre-1990:
6.10	Are evaporation ponds, lagoons or other waste water impoundments, lined with	Current:
	impervious material (clay, PVC, concrete etc.) to prevent groundwater contamination?	Pre-1990:
6.11	Are records kept of the location and contents of each above ground and underground waste	Current:
	water storage vessel, lagoon or pond?	Pre-1990:
6.12	Is plant sewage treated or disposed of in a manner that does not contaminate surface	Current:
	water or groundwater?	Pre-1990:
6.13	Are the waste waters from cooling tower blowdown or boilers treated and disposed of	Current:
	by environmentally safe methods?	Pre-1990:
6.14	Treated/untreated wastewater outfalls discharge to:	
	- Stream or river	Current:
		Pre-1990:

- · ____ -

20

CONFIDENTIAL PET 040907

A A N

Υ.

•

ø

ţ

1

.

٩

~

	- Storage (no discharge)	Current:	
		Pre-1990:	
	- Septic tank	Current:	
		Pre-1990:	
	- Storm sewer	Current:	
		Pre-1990:	
	- Other	Current:	
		Pre-1990:	
6.15	Has wastewater ever been discharged to on-site lagoons, leach fields, septic systems, spray irrigation, etc.? Have any	Current:	
	of these systems ever been drained or filled? With what frequency? If drained, what was fate of sludges or other solids removed?	Pre-1990:	
6.16	List all water discharge violation notices, such as warnings (verbal or written), citings, fines, or informal meetings,	Current:	
	and/or enforcement action proceedings, taken against this facility, the reason(s) for each, and their current status.	Pre-1990:	

CA1069655

6.17	Location of wastewater treatment facility:	Current:
		Pre-1990:
	- Design capacity	Current:
		Pre-1990:
<u> </u>	- History of plant	Current:
		Pre-1990:
6.18	Inspection history of facility by government authorities.	Current:
		Pre-1990:
6.1 9	Plant waste water effluent permits: - Regulatory agency	Current:
		Pre-1990:
	- Date(s)- issued	Current:
		Pre-1990:

F

Į

1

4

4

Ž

1

,ni

4

ji A

1

.9

۲

14

CA1069656

	- Expiration	Current:	
		Pre-1990:	
6.20	Design capacity of pretreatment plant:	Current:	
		Pre-1990:	
	- History	Current:	
		Pre-1990:	
	- Type of pretreatment	Current:	······
		Pre-1990:	
	- Plant designer	Current:	
		Pre-1990:	
6.21	Who performs required monitoring analysis?	Current:	
		Pre-1990:	
6.22	Who has responsibility for record keeping?	Current:	
		Pre-1990:	
<u> </u>	I	23	CONFIDENTIÂL

PET 040910

6.23	Has or does wastewater from adjoining sources (including neighbours) flow into facility sewer system(s)?	Current:
		Pre-1990:
6.24	If 'yes', were or are there actual or potential non-compliance problems?	Current:
		Pre-1990:
6.25	Fate of pretreatment residues.	Current:
		Pre-1990:

6.26 List all regulatory agencies with which the plant deals on wastewater issues. Attach copies of permits.

Name of Agency	Address	Contact Person	Telephone

24

CONFIDENTIAL PET 040911

CA1069658

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

ļ

٩

ą

1

4

1

1

4

1

Į

4

.

×

•

7. WASTE HANDLING, STORAGE, TRANSPORTATION, AND DISPOSAL

7.1 Identify any National/ Region laws or regulations which address the handling and storage, transportation and disposal of hazardous and non-hazardous waste.

7.2 List all regulatory agencies with whom the plant has dealt regarding wastes.

Name of Agency	Address	Contact Person	Telephone

25

egulations which address the h us and non-hazardous waste. the plant has dealt regarding v Contact P

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069659

mazare	dous Waste Generation	
7.3	Identify present and past generation of hazardous waste streams. Detail waste sources	Current:
	and volumes.	Pre-1990:
7.4	Is the plant registered with a generator number? If so, identify.	Current:
		Pre-1990:
7.5	Has there been a waste analysis plan in effect, including sampling/analyses prior to storage and disposal?	Current:
		Pre-1990:
7.6	Has the plant ever treated, stored, or disposed of hazardous waste on site ?	Current:
	Describe. Has it been licensed to do so?	Pre-1990:
7.7	Is a waste manifest tracking system (consignment note) in effect on site? Describe.	Current:
		Pre-1990:
Hazaro	dous Waste Storage	L
7.8	Review hazardous waste storage with respect to storage design, waste compatibility,	Current:
	secondary containment structures, drum condition, labelling, aisle space and length of time in storage.	Pre-1990:

.

.

Į

. .

Ń

湖

4

.1

4

· · ·

. 2 a 2 ...

,

÷

4

.

:

1

26

7.9	How have wastes been transported to and from the drums or tanks?	Current:	
		Pre-1990:	
7.10	Describe storm drains, bunds, or secondary containment in transfer area.	Current:	
		Pre-1990:	
Hazard	lous Waste Disposal		
7.11	Provide a list of all hazardous waste disposed of by the plant, including demulsifiers, corrosion	Current:	
	inhibitors etc.	Pre-1990:	
7.12	As far as possible, identify all hazardous waste disposal facilities ever used by the plant.	Current:	
Are these facilities licensed ? Have the facilities been visited to verify waste disposal practices ?	Pre-1990:		
7.13 Describe any hazardous waste disposal on-site. Include on-site lagoons, landfills, land treatment	Current:		
	systems, incinerators or other treatment systems.	Pre-1990:	
7.14	Do these disposal methods meet any standards or requirements ? National standards ?	Current:	
L	UNEP standards ?	Pre-1990:	
	<u> </u>	<u> </u>	L

27

CONFIDENTIAL PET 040914

7.15	Describe the process of shipping wastes off-site. Are company- owned vehicles used? Are they	Current:
	licensed to haul hazardous wastes ?	Pre-1990:
7.16	Does any waste in any form leave the site which could be traced by labels or other method	Current:
	to the plant ?	Pre-1990:
7.17	Are any waste materials recycled or reused on site ? Describe all such processes.	Current:
		Pre-1990:
7.18	Are there any "cleaner production" or pollution prevention/waste minimization	Current:
	plans ? Describe.	Pre-1990:
7.19	Indicate procedures for disposal of empty chemical containers (eg. 55 gallon drums).	Current:
		Pre-1990:
Specifi	c Hazardous Wastes	
7.20	List sources, volumes produced, handling and storage procedures, and disposal fate of	Current:
	waste oil (lubrication, hydraulic, vacuum, generator, cutting, etc.) generated at the plant.	Pre-1990:

3

. . .

ł

7

Į.

1

CA1069662

CONFIDENTIAL PET 040915

7.21	Fate of process wastes: liquids, solids, and sludges.	Current:
		Pre-1990:
Nonhaz	Lardous Waste	
7.22	Indicate sources, and volumes of non-hazardous wastes, including general trash (kitchen	Current:
wastes, paper, wood, oil rags, plastic wraps, food left-overs, etc) and processing related wastes.	Pre-1990:	
7.23	Indicate storage procedures of non-hazardous wastes.	Current:
		Pre-1990:
	Indicate disposal procedures of non-hazardous wastes including use of incinerators and	Current:
	procedures for disposal of resulting ash.	Pre-1990:

29

8.	MATERIAL HANDLING AND STOP	LAGE
8.1	Are material inventory lists, including quantities and locations available? How often	Current:
	are these inventories updated?	Pre-1990:
8.2	Has the plant produced a separate hazardous substance inventory? (Please attach.)	Current:
		Pre-1990:
8.3	Identify hazardous or toxic materials or wastes stored or used on site. Identify maximum	Current:
	quantities on site and used or stored on the site in the past.	Pre-1990:
8.4	Have there ever been any incidents or accidents (spills, fires, injuries, etc.) involving any	Current:
	of these materials?	Pre-1990:
8.5	How are materials received (barge, truck, etc.) and stored on site (drums, tanks,	Current:
	cylinders)?	Pre-1990:
8.6	Does the company transport these materials directly or through contractors/suppliers?	Current:
		Pre-1990:

. - ------

30

Ş

•

백

1

A CONTRACTOR

4

ł

•

A

CA1069664

8.7	Have incompatible materials been segregated and labelled?	Current:	
		Pre-1990:	
8.8 .	Describe any hazardous material storage and handling management and training plans.	Current:	
	Attach Table of Contents from spill contingency plans, if available.	Pre-1990:	
8.9	3.9 Describe the condition of drums and drum storage area: - condition of drums (corrosion, etc.)	Current:	
		Pre-1990:	
	- stacking height, storage racks	Current:	
		Pre-1990:	
	- presence of absorbents, spill kits, etc.	Current:	
		Pre-1990:	

9.	STORAGE TANKS	
9.1	Describe any National / Regional laws or regulations in effect governing the use/regulation of underground / above-ground storage tanks. Are these regulated under fire regulations ?	Current:
		Pre-1990:
9.2	Describe waste materials stored in tanks or cisterns; tank design and capacity, tank materials, tank age,	Current;
	leak detection systems or ground water monitoring systems employed.	Pre-1990:
9.3	Do the tanks meet any design requirements? Describe.	Current:
		Pre-1990:
9.4	Any tank integrity or leak detection tests or inventory control records for these tanks?	Current:
		Pre-1990:
9.5	Obtain copies of any up-to-date tank layout plans, including:	
	- Existing Tanks	Current:
		Pre-1990:
,	- Removed Tanks	Current:
		Pre-1990:

.

32

CONFIDENTIAL PET 040919

3

.

,

5

174

,13

4

£

,≊ a

ş

.е. Т

:

	- Abandoned Tanks (including tanks no longer in use and/or filled in place)	Current:
		Pre-1990:
	- Connecting Pipelines and Pipe Pits	Current:
		Pre-1990:
9.6	Obtain a tank inventory.	Current:
		Pre-1990:
9.7	Do the tank basins meet any design requirements? - size of tank basins	Current:
	- drain valves of tank basins - dam walls.	Pre-1990:
9.8	Are tank structures designed in accordance with any applicable regulations?	Current:
		Pre-1990:

CONFIDENTIAL PET 040920

10. U	10. USE/DISPOSAL OF PRODUCED GAS			
10.1	Describe the produced gas gathering system.	Current:		
		Pre-1990:		
10.2	is gas flared at any wellsites?	Current:		
		Pre-1990:		
10.3	Is gas flared at any of the production stations?	Current:		
		Pre-1990:		
10.4	Are knockout tanks in place to collect condensate? How is the condensate handled?	Current:		
		Pre-1990:		
10.5	Is gas vented at any of the wellsites, or production stations?	Current:		
		Pre-1990:		
10.6	Are flare pits in use at wellsites or production stations?	Current:		
		Pre-1990:		

4

. .

4

CA1069668

10.7	Is produced gas used in any way or is it always flared or vented?	Current:	
		Pre-1990:	
10.8	Is gas disposed of in accordance with any applicable regulations?	Current:	
		Pre-1990:	

10.9 List all regulatory agencies with whom the plant has dealt regarding produced gas.

Name of Agency	Address	Contact Person	Telephone

35

CA1069669

TEIDENTIAL ET 040922

CONF

L

11. CON	11. CONTAINMENT AND CONTROL OF CRUDE OIL SPILLS			
cc pr	o on-site spill prevention and introl methods and equipment ovide:	Current:		
(1) Leak prevention in storage and transfer facilities?	Pre-1990:		
(2	Primary containment (tanks, sumps, dykes, drainage)?	Current:		
		Pre-1990:		
(3) Secondary containment (ditches, lagoon, pits)?	Current:		
		Pre-1990:		
(4) Emergency containment (sandbags, pumps, absorbents)?	Current:		
		Pre-1990:		
(5) Safety valve and rupture disk discharge systems?	Current:		
		Pre-1990:		
(6) Emergency venting, purging and bypass systems?	Current:		
		Pre-1990:		

CONFIDENTIAL PET 040923

٩

đ

1

ļ

1

۲ بر

- **1** - 1

.

-

CA1069670

1.2	Are frequent formal surveys	Current:	
	made to identify the need for spill prevention control methods and equipment?		
		Pre-1990:	
11.3	Have any of the survey results been implemented?	Current:	
		Pre-1990:	
11.4	Have devices been installed to detect losses, leaks and/or spills from any above ground or	Current:	
	underground installations?	Pre-1990:	
11.5	Is the level of emergency planning consistent with the degree of risk or possible	Current:	
	environmental impairment?	Pre-1990:	
11.6	Is the response capability sufficient to handle anticipated spills, releases, or other incidents?	Current:	
		Pre-1990:	
11.7	Is there a spill response plan for this facility?	Current:	
		Pre-1990:	
av	Is a copy of the spill plan available on-site, and are personnel familiar with the plan	Current:	
	and procedures?	Pre-1990:	
	1	37	FIDENTIAL T 040924

- --- -

:

CA1069671

-

11.9	Does the spill response plan include specific responsibilities for response and control activities?	Current:
		Pre-1990:
12.0	Do company personnel and contractors participate in training or drills to improve the	Current:
	response efficiency of company and mutual aid organizations?	Pre-1990:
12.1	If deficiencies were noted, or recommendations made arising out of an exercise, were they	Current:
	corrected or implemented?	Pre-1990:
12.2	Is there a designated spokesperson, trained for emergency response situations, to respond to regulatory agencies, the media and the public?	Current:
		Pre-1990:
12.3	Are details of previous spills and other related data relative to product storage and transfer	Current:
	sites available for use in planning for future facility decommissioning?	Pre-1990:
12.4	Have spill response plans been prepared for the route of products moved by road?	Current:
		Pre-1990:

.

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069672

2.5.

.

CONFIDENTIAL PET 040925

CA1069672

38

j j

łł

64

14 and serve

1

į.

ś

12

·

8

à

1

ų,

2.	RADIOACTIVE MATERIALS	
12.1	Identify types, quantities, and use (e.g. tracer, laser, etc.) of ionizing and non-ionizing radiation sources	Current:
	on-site.	Pre-1990:
12.2	Describe training programmes in effect for handling, storage and disposal of radioactive materials.	Current:
	Does this include employee exposure monitoring?	Pre-1990:
12.3	Identify quantities and waste types generated on-site which contain radioactive materials.	Current:
		Pre-1990:
12.4	Are radioactive materials disposed of on-site? Detail disposal methods, containment etc.	Current:
		Pre-1990:
12.5	Are records kept on-site of radioactive materials in use, stored or disposed of on-site? For how-	Current:
	long?	Pre-1990:
12.6	For off-site disposal of radioactive materials, identify transporter, disposal facility and final disposition of materials.	Current:
		Pre-1990:

CA1069673

12.7	Are records kept of off-site disposal and transport of facility radioactive materials? For how long?	Current:
		Pre-1990:
12.8	Are all radioactive materials and radiation-producing equipment licensed and/or registered with the	Current:
	appropriate regulatory agency?	Pre-1990:
12.9	Have all radioactive materials been disposed of in accordance with any applicable regulations?	Current:
		Pre-1990:

12.10 List all regulatory agencies with whom the plant has dealt regarding radioactive materials.

Name of Agency	Address	Contact Person	Telephone
· · · · · · · · · · · · · · · · · · ·			
	-		
	<u> </u>		

40

CONFIDENT 040927 PET

٩,

1

٦

.

12121

2

ł

ļ

1

쉓

ł

1

,**4**

13.	NOISE		٦
13.1	What are the local noise levels that must be met? - During the day?	Current:	
	- At night?	Pre-1990:	
13.2	Does the facility meet its noise level requirements?	Current:	_
		Pre-1990:	
	- Describe any areas of non-compliance.	Current:	
		Pre-1990:	_
	- What equipment is the cause ?	Current:	
		Pre-1990:	_
	- What remedial actions have been or are planned to be undertaken ?	Current:	
		Pre-1990:	
13.3	Does the facility have an up-to-date noise contour map?	Current:	
		Pre-1990:	

- -- -

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

ģ

CA1069675

	- How frequently are measurements taken?	Current:
		Pre-1990:
13.4	Are noise complaints received from the public?	Current:
		Pre-1990:
	- If so, how many per year?	Current:
		Pre-1990:
	- How are these handled ?	Current:
		Pre-1990:
13.5	Is the facility operating in compliance within accepted regulations regarding noise levels at the workplace ?	Current:
		Pre-1990:

13.6 List all regulatory agencies with whom the plant has dealt regarding noise.

Name of Agency	Address	Contact Person	Telephone
	·		

CONFIDENTIAL PET 040929

7

-1

1

1

11

;

4. D	SPOSAL OF PRODUCED WATER	ويابتنا والأنار فأركنت ويتبرج بالمتحد ويتبرج فيكبنا	
4.1	Is produced water routinely analyzed prior to disposal?	Current:	
		Pre-1990:	
4.2	Produced water outfalls discharge to:		
	• stream, river, lake	Current:	
		Pre-1990:	
	- disposal well	Current:	
		Pre-1990:	
	- other (ie. lagoons)	Current:	
		Pre-1990:	
14.7	List all water discharge violation notices, such as warnings (verbal or written), citings, fines, or informal	Current:	
	meetings, and/or enforcement action proceedings, taken against this facility, the reason(s) for each, and their current status.	Pre-1990:	
14.8	Is produced water disposed of in accordance with any applicable regulations?	Current:	
		Pre-1990:	

CONFIDENTIAL PET 040930

CA1069677

L

T

14.8 List all regulatory agencies with which the plant deals on produced water. Attach copies of permits.

Name of Agency	Address	Contact Person	Telephone
		·	

44

CONFIDENTIAL PET 040931

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

• •

1

11

4

15.1	Are tank bottoms analysed prior to disposal?	Current:
		Pre-1990:
15.2	Are tank bottoms treated before disposal?	Current:
		Pre-1990:
15.3	Are records kept on the volume of tank bottoms?	Current:
		Pre-1990:
15.4	How are tank bottoms disposed?	Current:
		Pre-1990:
15.5	Have tank bottoms been disposed of in accordance with any applicable regulations?	Current:
		Pre-1990:

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069679

CONFIDENTIAL PET 040932

CA1069679

45

15.6 List all regulatory agencies with whom the plant has dealt regarding tank bottoms.

Name of Agency	Address	Contact Person	Telephone

46

CONFIDENTIĂL PET 040933

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

•_

,

2

1

ų,

2

•

PART B WELL SITE MANAGEMENT

1.0 Describe any erosion control programs implemented. Current: 1.1 Describe any vegetation management/control program implemented. Current: 1.2 Are mechanical methods of weed control attempted before using chemical methods? Current: 1.3 What reclamation/revegetation programs have been implemented? Current: 1.3 Are there monitoring programs to detect spills or leaks? Current: 1.4 Are wellheads and exposed casing marked and protected against accidental impact? Current: 1.5 Are wellheads and exposed casing marked and protected against accidental impact? Current:				
1.1 Describe any vegetation management/control program implemented. Current: 1.1 Describe any vegetation management/control program implemented. Pre-1990: 1.2 Are mechanical methods of weed control attempted before using chemical methods? Current: 1.2 Are mechanical methods of weed control attempted before using chemical methods? Current: 1.3 What reclamation/revegetation programs have been implemented? Current: 1.3 Are there monitoring programs to detect spills or leaks? Current: 1.4 Are there monitoring programs to detect spills or leaks? Current: 1.5 Are wellheads and exposed casing marked and protected against accidental impact? Current:	1.0		Current:	
management/control program implemented. Pre-1990: 1.2 Are mechanical methods of weed control attempted before using chemical methods? Current: 1.3 What reclamation/revegetation programs have been implemented? Current: 1.3 What reclamation/revegetation programs have been implemented? Current: 1.4 Are there monitoring programs to detect spills or leaks? Current: 1.5 Are wellheads and exposed casing marked and protected against accidental impact? Current:			Pre-1990:	
1.2 Are mechanical methods of weed control attempted before using chemical methods? Current: 1.2 Are mechanical methods of weed control attempted before using chemical methods? Current: 1.3 What reclamation/revegetation programs have been implemented? Pre-1990: 1.3 What reclamation/revegetation programs have been implemented? Current: 1.4 Are there monitoring programs to detect spills or leaks? Current: 1.5 Are wellheads and exposed casing marked and protected against accidental impact? Current:	1.1	management/control program	Current:	
control attempted before using chemical methods? Pre-1990: Pre-1990: Pre-1990: 1.3 What reclamation/revegetation programs have been implemented? Current: Pre-1990: Pre-1990: 1.4 Are there monitoring programs to detect spills or leaks? Current: Pre-1990: Pre-1990: 1.5 Are wellheads and exposed casing marked and protected against accidental impact? Current:			Pre-1990:	
1.3 What reclamation/revegetation programs have been implemented? Current: 1.3 What reclamation/revegetation programs have been implemented? Current: 1.4 Are there monitoring programs to detect spills or leaks? Current: 1.5 Are wellheads and exposed casing marked and protected against accidental impact? Current:	1.2	control attempted before using	Current:	
programs have been implemented? Pre-1990: 1.4 Are there monitoring programs to detect spills or leaks? Current: 1.5 Are wellheads and exposed casing marked and protected against accidental impact? Current:			Pre-1990:	
1.4 Are there monitoring programs to detect spills or leaks? Current: 1.4 Are there monitoring programs to detect spills or leaks? Pre-1990: 1.5 Are wellheads and exposed casing marked and protected against accidental impact? Current:	1.3		Current:	ł
detect spills or leaks? Pre-1990: 1.5 Are wellheads and exposed casing marked and protected against accidental impact?			Pre-1990:	ľ
1.5 Are wellheads and exposed casing marked and protected against accidental impact?	1.4		Current:	ſ
marked and protected against accidental impact?			Pre-1990:	
Pre-1990:	1.5	marked and protected against	Current:	
			Pre-1990:	

CA1069681

CONFIDENTIAL PET_040934

CA1069681

1.6	Have spill prevention measures been implemented?	Current:
		Pre-1990:
1.7	Are the cellars covered with grates to contain small spills from the wellhead?	Current:
		Pre-1990:
1.8	Have leases been cleared of debris, used buildings and equipment?	Current:
		Pre-1990:
1.9	Are suspended well sites monitored in the same fashion as operating wells.	Current:
		Pre-1990:
1.20	Are efforts made to minimize lease size while accommodating workover and maintenance	Current:
	requirements?	Pre-1990:
1.21	How are flare pits maintained?	Current:
		Pre-1990:
1.22	Has odour been a problem at any wellheads, have remedial measures been taken?	Current:
		Pre-1990:

CONFIDENTIAL PET 040935

Subject of

•

.

÷.

4

:

÷

1

.

1.23	Workover and Completion Wastes	Current:	
	(A) Were all workover and completion wastes stored in segregated tanks?	Pre-1990:	
	(B) Were salt solutions sent for disposal by: deep well disposal; approved road	Current:	
	spraying; pumping off lease; burial or spread on lease?	Pre-1990:	
	(C) Were oil/oil water emulsions disposed by: salvaging oil; downhole disposal; oil	Current:	
	reclaimers; pumping off lease; burial or spread on lease?	Pre-1990:	
	(D) Were frac sands and components buried or spread on the surface of the lease?	Current:	
		Pre-1990:	
	(E) Was acid water disposal by: neutralization/downhole disposal; neutralizing/	Current:	
	vaporation; pumping off-lease; burial on-lease; or, directing to sump?	Pre-1990:	
1.24	Were environmentally safe drilling products used in the program?	Current:	
		Pre-1990:	
1.25	Were efforts made to conserve or recycle water?	Current:	
		Pre-1990:	
	<u>.</u>	49 CONFIDENTIAL PET 040936	

1.26	Were waste streams segregated before going to the main sump?	Current:
		Pre-1990:
1.27	Were measures taken to protect surface waters, freshwater horizons and mineral resources	Current:
	from contamination?	Pre-1990:

CONFIDENTIAL PET 040937

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

-

٠,

.

-

1

1

4

CA1069684

PART C PIPELINE MANAGEMENT

1.1	Describe any erosion control programs implemented,	Current:
		Pre-1990:
1.2	Describe any vegetation management/control programs implemented.	Current:
		Pre-1990:
1.3	Are mechanical methods of weed control attempted before using chemical methods?	Current:
		Pre-1990:
1.4	Is brush control practiced on all flow, injection and group lines?	Current:
		Pre-1990:
1.5	What reclamation/revegetation programs have been implemented?	Current:
		Pre-1990:
1.6	Is there a monitoring program at flowlines to detect spills or leaks?	Current:
		Pre-1990:

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069685

CONFIDENTIAL PET 040938

1.7	Are there remote detection systems in place to detect spills and leaks from flowlines?	Current:
		Pre-1990:
1.8	Are spill events assessed in an effort to design remedial measures?	Current:
		Pre-1990:
1.9	Are suspended flowlines monitored in the same fashion as the operating flowlines?	Current:
		Pre-1990:

.

-

1

4

۶

1 F

۰.

. 7

1

.

APPENDIX C

SELECTION OF WELL SITES, FLOWLINES, PIPELINES AND PRODUCTION FACILITIES

AGRA Earth & Environmental Group

.....

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069687

Table C – 1 Random Selection of Well Sites and Flowlines For Phase 1 Assessment

Field	Well Site Identification	Well Site Selection	Flowline Selection		
	1 Indicates site selected 1 1 2 1				
Lago Agrio					
	3		1		
	5		1		
	7 2		1 Martine Company		
	9 98		1 wait /		
	10 11B		1		
	12 13		1		
	14 15				
	16 16B				
	17 18	n da	T		
	19 20		Ť.		
	21 22		1		
	23 24				
	25 26		1		
	27 28				
	29 30		1		
	31 32		t		
	33 34		1		
Total Percent	35 37 100				
Parahuacu		·	·		
	1 2 3		T		
	3 4 5		1		
Total Percent	5	5	2		
		<u> </u>			
			CONFIDENTIAL PET 040941		

÷

;

Ä

÷

•

ξ.

ľ

Table C – 1 Random Selection of Well Sites and Flowlines For Phase I Assessment

Field	Well Site Identification	Well Site Selection	Flowline Selection
	1	Indicates site	e selected
Atacapi	1 2 3 4 5 6	1 . 1 . 1	
Total Percent	6 100	3 50	1
Guanta	2	(#1.50) 1	l
	3 4	1	1
	5 6 7 8	. 1	
Total	9 9	4	2
<u>Percent</u> Aguarico	100 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8 AG9 AG10	44 1 1 1	22
Total Percent	10	5	2 20
Percent Shushufindi	100 B56 B57 B59 61 B62 B63 B64 A65 B66 A65 B66 A67 68 69 70	50 1 1 1 1 1 1 1 1 1 1 1	CONFIDENTIAL PET 040942

CA1069689

Â

1 (S) 1

.

.:

*

-+1

ł

·

.

Table C – 1 Random Selection of Well Sites and Flowlines For Phase I Assessment

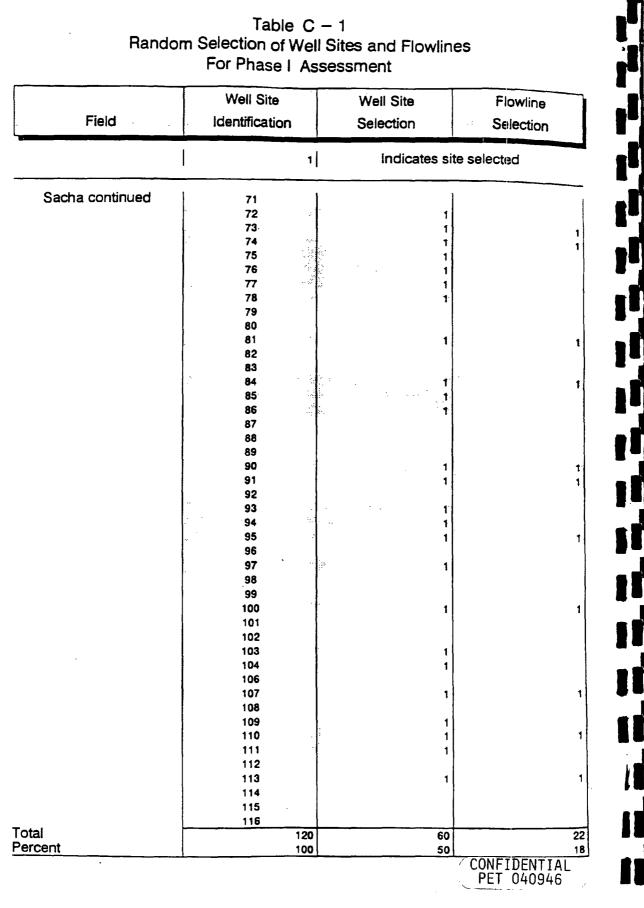
Shushufindi continued	71 WIW1 WIW2 WIW3	1	e selected
Shushufindi continued	WIW1 WIW2	1	
	WIW2		
		11	
	TT 1770	Ľ	
	WIW4	: t	
	WIW5 WIW6		
	WIW7 COL 2		
	8WIW		
	A1 A2	Par al est	
	A3		
	A4		
	A5 A6		
	A7.5	n n n n n n n n n n n n n n n n n n n	
	A8 A9-1 - A9-1 -	91. J	
	A10		
	A11		
	A12 A13	ter an	
	B14		· ·
	B15 B15B	. 1.	
	B155 B16	f	
	A17		
	A18 A19		
	A20	1	
	A21	•	
	A22 A22B	1	
	A23		
	A24	1	
	A25 A26	1	
	A27		
	A28 A29		
	A30	t	
	B31	1	
	B32 A33	· · · · · · · ·	
	A34	t	
	A35		
	B36 A38		
		• • •	
			CONFIDENTIA PET 040943

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table C – 1 Random Selection of Well Sites and Flowlines For Phase I Assessment

,

	For Phase A	ssessment	
Field	Well Site Identification	Well Site Selection	Flowline Selection
	1	Indicates site	selected
Shushufindi continued	A39		
	A41 A42		
	A42B A43	1	
	A44 6B	1	
	A45 A45B	1	
	46 A48		1
	B49	1 A.S. & M	
	A50 B51	1 1 1	T j T j
	B52 B53	1	
	854 855	the second second	
otal Percent	79		15 19
Sacha		. A A A A A A A A A A A A A A A A A A A	
	WIW1 WIW2 WIW3	1942) - Carlos A. (19	
	WIW4	1	
	WIW5 WIW6	1	-1
	1 2		
	3 4	1	
	6 7		
	8	1	
	10		1
	11 12	1	•
	13 14		
	15 1 <u>6</u>	1	
	17 18	1	
	19 20	1	1
	20 21 22	1	
	22	r l	CONFIDENTIAL PET 040944


ł

.

Table C - 1 Random Selection of Well Sites and Flowlines For Phase I Assessment

Field	Well Site Identification	Well Site Selection	Flowline Selection
	ľ	1 Indicates s	ite selected
Sacha continued	23 24		
	25 26	1	
	27	1	
	28 29	1	
	30 31		
	32 33		
	34 35		
	36		
	37 38		
	39 40	1 () 1 ()	
	41 42	o	
	43 44		
	45 46	1	
	47		
	48 49	1	2
	50 51		
	52 53		
	54 55	1	
	56 57	.1	
	58	1	• •
	59 60	1	
	61 62		
	63 64		
	65 66		
	67 68		1
	69		
	70	I	CONFIDENTI
			CONFIDENTI PET 04094

-- -- -

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table C – 1 Random Selection of Well Sites and Flowlines For Phase L Assessment

Field	Well Site Identification	Well Site Selection	Flowline Selection
	1	Indicates sit	e selected
Culebra Total Percent	1 2 2 100	1 1 50	1 1 50
Yulebra	1 2 3 3	1	1
Yuca	1 2B 3 4 5 6 9 10 12 9		<u>. 1</u>
Percent Yuca Sur Total Percent	100 1 1 100	44 1 1 100	1 1 1 1
Auca	1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 19B	t. 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CA1069694

Table C – 1 Random Selection of Well Sites and Flowlines For Phase I Assessment

- · ·

Field	Well Site	Well Site Selection	Flowline Selection
	1	Indicates site	selected
Auca continued	20 21 22 23 24	1	
	24 25 26	1	
otal Percent	27 100	14 52	5
Auca Sur	1 2	1	1
otal ercent	2 100	1 50	1
Rumiyacu	1	1	1
otal ercent	1 100	1 100	1 100
Cononaco	1 2 3 4 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1	and a second s
	7 8 9 10	1	· . 1
	11 12 13 14	1	1
otal ercent	13 100	6 46	3 23
Dureno otal Percent	1 1 100	1 1 100	1 1 100
Project Totals	<u></u>		• <u>••••</u> •••••••••••••••••••••••••••••••
otal Vercent	325	163 50	66

CA1069695

CA1069695

Pipeline	Corridor	Total	Assessed	Number of	Length of	١	: •	Lo	cation of f	landom	ly S	electe	d Segm	ents	
		Length	Length	Assessed	Assessed			<u></u>					L		
Beginning	End		(20%)	Segments	Segment	I	Segn	nent 1	Segn	ent 2		Segm	ent 3	Segn	nent 4
		(Km)	(Km)		(Km)		Begin	End	Begin	End	L	Begin	End	Begin	End
							Star	t at begi	nning of c	orridor.	All	distan	cesare i	n kilome	tres.
	ſ <u></u>	r		<u> </u>	· · · · · · · · · · · · · · · · · · ·	ו	ſ	[]							
Atacapi Station	Guanta Juntion	13	2.5	1	2.5		4.9	7.4							
Guanta Juntion	Lago Agrio Station	12	2.5	1	2.5		5.7	8.2							
Lago Agrio Station	Shushulindi Juntion	29	6.0	2	3.0		17.4	20.4	11.0	14.0					
Shushulindi Juntion	Shushulindi Station	20	4.0	2	2.0		5.9	7.9	3.0	5.0					
Shushulindi Station	Aguarico Station	13	3.0	1	3.0		11.3	14.3							
Shushufindi Juntion	Yulebra Juntion	35	7.0	3	2.3		28.7	31.0	8.7	11.0		32.1	34.4		
Yulebra Juntion	Yuca Station	16	3.0	1	3.0		15.8	18.8							
Yulebra Juntion	Cononaco Station	50	10.0	4	2.5		45.8	48.3	48.9	51.4		5.1	7.6	13.7	162

Table C – 2Random Selection of Secondary Pipeline Segments For Phase I Assessment

[
Totale	188	38	15

PE

IDENTIAL 040949

Table	С		3
-------	---	--	---

Production Stations Requiring Phase I Assessment

Central Production Station North Production Station
Production Station
Production Station
Production Station
Production Station
Central Production Station North Production Station South Production Station Southwest Production Station Water Injection Station
Central Production Station North # 1 Production Station North # 2 Production Station South Production Station
Production Station
Production Station
Production Station
Central Production Station South Production Station
Production Station
Production Station
Production Station
2

CA1069697

ť

		•										
 						li	able C	C – 4				
			Develo	pmen	t Histo	orv. W	^l orkov	er Re	cord a	and Spill Rec	ord	
			For Well	Sites	and F	lowlin	ies Su	bject	to Pha	ase I Assess	ment	
· ۲-	Acc	essed	Assessed		Well Si			-		Wellsite	Spill Re	
, J		Vell	Flowline		Spud/C					Workovers	1973-	
	S	Site		MM	YY	MM	YY	MM	YY	Post 1990	Number	Volume
										(Number)	of Spills	(Barrels)
			Indicates w	ell sites	and flow	wlines se	elected (or asses	ssment.			
	LA			2	67	4	67	5	72		1	50
	LA			5	67	6	67	5	72	1	1	30
	LA			2	70	3	70	9	72			
	LA	<u>;</u> ;	1	3	70	5	70	5	72			
	LA			3	70	5	70	5	72		2	103
	LA	. O		3	70	6	70	5	72			
		(Le la		6	70	7	70	5	72	1		
<u> </u>				4	76	5	76	6	76	1	1	25
	LA			7	70	8	70	5	72	2		
- F	LA			9	70	10	70	5	72		1	15
- F-				11	70	12	70					
- F		ZQ.		12	70	2	71	6	72		1	50
-		2		10	70 73	<u>11</u> 7	<u>70</u> 73	<u>5</u> 7	72 73		2	<u>45</u> 40
		<u>Z</u>		6					83		2	<u> </u>
		() () () ()		<u> </u>	81 83	10 2	<u> </u>	1	83			{
、		83		2	82	- 2	<u> </u>	8	82			
		84 84			80	9	80	12	86			
				12	87	12	87	2	92			
CONFIDENTIAL PET 040951	PH	(35) (25)	f	4		5		12	80	2		
55 -	 PH		1		79	10	70	7	80	2		16
95	AT	1		2	68	9	68	12	78			
	AT	2		5	78	6	78	<u> </u>	79	1		40
· -	AT	3		9	78	10	78	12	78			

,

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

1

.

CA1069698

4

Table C -4

3.0.0.

Development History, Workover Record and Spill Record For Well Sites and Flowlines Subject to Phase I Assessment

ſ		essed /ell	Assessed				lileston			Wellsite		Record
			Flowline	the second s			tion/Pro			Workovers	the second s	-1990
		ite		MM	YY	MM	II	MM	Ŷ	Post 1990	Number	Volume
L				24 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -					1.1	(Number)	of Spills	(Barrels)
			Indicates v	vell sites	and flo	wlines s	elected i	or asse	ssment.			
Γ	GU			12	85	2	86	3	86	1	1	450
E	GU			9	86	10	86	11	86	1		
[GU			1	87	2	87	8	87	1		
Γ	Ğυ			4	87	5	87	9	87	1		
	AG			7	73	8	73	12	75			
	AG			3	74	3	- 74	4	74			
	AG			8	73	9	73	1	74		1	3
Γ	AG			2	74	3	74	4	74	1	1	5
ſ	AG			1	80	2	80	8	80			
Γ	SSF			8	75	9	75	11	75	1		
Γ	SSF			11	75	11	75	2	76	2		
Ţ.	SSF			10	77	11	77	11	77	1		
F	SSF	: :**		6	85	7	85	8	85	1		
Γ	SSF	a(6).9	1	11	85	12	85	1	86		1	60
	SSF	e de la companya de l		7	85	8	85	9	85	2		
F	SSF			12	85	2	86	3	86			
	SSF			6	86	7	66	8	86			
-12	SSF	(B)		5	88	6	88	7	88	1		
CONF	SSF	(\widetilde{N})		6	88	7	88	8	88	1		
	SSF	74		11	90	12	90	1	91	2		
T 040952	SSF	NON?		6	83	6	83		_			
1951	SSF	CONTRACT.		7	83	8	83					
NP	SSF	NUME?					84					
	SSF			4	68	1	69	<u>a</u> l	72	•_ ••••- • • ••		(1991)

		PET
CA1069700	CA1069700	PET 040953

.

Ŋ

- 1

7

a. **4**

.

Τ....

Table C – 4
Development History, Workover Record and Spill Record
For Well Sites and Flowlines Subject to Phase I Assessment

-

. تله .

ъ.

تىلەتك.

لعد

644

St.

	sessed Nell	Assessed Flowline		Well Si Spud/C					Wellsite Workovers	Spill F 1973-	lecord - 1990
	Site		MM	YY	MM	YY	MM	ŶŶ	Post 1990	Number	Volume
									(Number)	of Spills	(Barrels)
		Indicates v	vell sites	and flow	wlines s	elected f	or asses	sment.			
SSF	AY CON		8	72	8	72	9	72	[]		
SSF			6	72	6	72	7	72			
SSF	612530		4	72	5	72	7	72			
SSF			5	72	5	72	8	72			
SSF		<u> </u>	7	72	8	72	6	74			
SSF	L B B B L		1	73	1	73	2	73			
SSF			1	73	1	73	2	73	1	1	1
SSF			5	77	5	77	6	77	3		
SSF	1.647		9	72	10	72	10	72	2		
SSF			9	. 72	9	72	10	72	1	1	10
SSF	(With)	<u>i (</u>	12	72	12	72	1	73			
SSF	(3 : 5)		4	73	4	73	8	84	4		· · · · · · · · · · · · · · · · · · ·
SSF	<u> </u>		7	73	7	73	8	73			
SSF		1	5	73	6	73	6	73			
SSF	a (dec)		11	73	12	73	11	73	2		
SSF		i i k	12	73	1	74	1	76			
SSF	ACK		12	73	1	74	1	74			· · · · · · · · · · · · · · · · · · ·
SSF	(3)3)		1	81	2	81	3	81			
SSF	(12 <u>84</u> 5)		11	73	12	73	1	74			
SSF SSF SSF SSF SSF	ANE		9	86	9	86	9	86			· · · · ·
SSF	2000,000,000,000,000,000,000,000,000,00					74	3	74	1		
	(3) <u>,</u> (5)		3	74	4	74	4	74			
SSF	A.250	<u>U</u>		77	9	77	11	75			
SSF	IEIES!	<u>.</u>	8	74	9	74	9	74		1	6

Table C – 4Development History, Workover Record and Spill RecordFor Well Sites and Flowlines Subject to Phase I Assessment

As	ssessed Well	Assessed Flowline		Well Si Spud/C					Wellsite Workovers	Spill F	Record -1990
	Site		MM	YY I	MM		MM	Ŷ	Post 1990 (Number)	Number of Spills	Volume (Barrels)
		Indicates v	vell sites	and flow	vlines s	elected (or asses	sment.			
SSF			4	+ 75	4	75	5	75			
SSF			7	75	8	75	9	82			
SA						84					
SA	S. (1992)					84					
SA			1	77	2	77					
SA						84					
SA						84					
SA	0.82676					84					
SA			1	69	2	69	7	72		1	
SA			7	69	8	69	8	73		5	1
SA			3	71	4	71	7	72		1	
SA	$(\mathbf{\hat{o}})$		3	71	4	71	6	72		2	1
SA			5	71	6	71	6	72			
SA			4	71	5	71	6	72			
SA	<u>(</u>)		3	31	71	4	19	71		9	5
SA			6	71	7	71	6	72		3	
SA	18		7	71	8	71	6	72			
Z SA			7	71	8	71	6	72		5	2
	<u>, 20</u>		7	71	7	71	6	72		6	
ENTISA			9	71	10	71	6	72		2	4
SA	25		8	71	9	71	6	72		2	·
SA	252		9	71	8	71	6	72			
SA			12	71	12	71	6	72	2		3
SA	<u>(</u>		12	72	1	72	10	72		1	228

CA1069701

CA1069702	

CA1069702

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378	
ESTED	

Table C – 4Development History, Workover Record and Spill RecordFor Well Sites and Flowlines Subject to Phase I Assessment

		essed	Assessed			te – M				Wellsite	Spill R	ecord
		Vell	Flowline					Workovers	1973-	-1990		
1	5	Site		MM	YY	MM	YY	MM	YY	Post 1990	Number	Volume
L										(Number)	of Spills	(Barrels)
			Indicates v	vell sites	and flo	wlines se	elected	or asses	sment.			
	SA	- 3X	1	11	71	12	71	6	72	1		
. L	SA	92) 		12	71	12	71	6	72		2	43
	SA	૾૽૽ૼ૾ૣૺ૽ૺ	<u> </u>	10	71	11	71	4	73		2	33
	SA			12	71	1	72	7	72		1	. 10
L	SA			2	72	2	72	6	72	· · · · ·	1	30
	SA	$\langle \vec{k} \rangle$		4	72	4	72	8	72	1		
L	SA			5	72	6	72	9	72			
Ļ	SA		<u> </u>	6	72	7	72	2	75		1	50
Ļ	SA	<u>.</u>		5	73	5	73	12	76		1	40
ļ	SA			4	73	5	73	5	73		2	70
ļ	SA			5	73	6	73	12	76	1	1	50
ļ	SA	- ES	4	5	73	6	73	10	73		4	50
1	SA			8	73	8	73	11	74			
ļ	SA	$\widehat{(\hat{j},\hat{l})}$		7	73	7	73	9	73		5	142
ļ	SA			3	74	4	74	4	74			
2	SA			2	74	4	74	4	74			
PET	SA			5	74	5	74	6	74	1	1	50
11	SA	16.5		5	74	5	74	6	74	·····	1	50
0 E E	SA	77		6	76	6	76	7	76		1	10
100	SA	200 - N		7	76	7	76	8	76	<u></u>		
1DEN 155	SA SA	<u>.</u>	1	9	76	9	76	9	76		1	200
ŕ	SA	<u>ê</u>		12	76	12	76	1	77			·
· F	SA	(23)		11	76	12	76	12	76			
Į	SA	38		10	79	12	79	81	80		I I	•

111

Table C – 4

Development History, Workover Record and Spill Record For Well Sites and Flowlines Subject to Phase I Assessment

A	ssesse Well	be	Assessed Flowline		Well Sit					Wellsite Workovers	Spill F 1973-	lecord - 1990
	Site			MM	ŶŶ	MM	Ŷ	MM	Ŷ	Post 1990 (Number)	Number of Spills	Volume (Barrels)
			Indicates w	ell sites	and flov	vlines so	elected f	or asses	sment.			
SA		:.¥1		7	80	8	80	8	80			
SA		() (S		8	80	9	80	9	80			
SA				4	81	5	81	9	83			
SA				5	81	6	81	9	81			
SA		S.		10	81	10	81	11	81	1		
SA		C		3	83	3	83	7	83			
SA		<u>(CSZ)</u>		10	85	11	85	12	85			
SA		3 (8), }		2	86	4	86	4	86	1		· . · · · · · · · · · · · · · · · · · ·
SA		W.		10	86	12	86	1	87			
SA				7	87	8	87	9	87			-
SA		: (O		10	87	11	87	11	87	1		
SA				2	88	3	88	3	88			
SA		ر زې		4	88	5	88	6	88			
CU		<i>e</i>	1	8	77	8	77	10	87	1		
YB		2.55	l i se se si s	5	85	5	85	6	85	1		
YU				9	79	11	79	12	80			
YU		(;)		12	79	2	80					
				10	79	11	80	1	81			······································
T YU		8		3	80	4	80	12	80			
		1		11	79	12	79	1	86			
Z AU		S		2	70	3	70	4	75		2	100
AU				12	73	1	74	5	86	1	ł-	
I AU		Ø		2	74	3	74	4	75		1	1
AU		11		10	74	11	74	4	76		l_	

APPENDIX D

.

FIELD DATA RECORDING SHEETS FOR PRODUCTION FACILITIES, WELL SITES AND PIPELINES

Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069704

SSESSMENT DATE:		ASSESSMENT PERSONN	IEL:
LOCATION			
FIELD:		SITE NUMBER:	
SITE NAME:		(Use field abbreviation and	l wellsite number)
AGE AND STATUS			
SPUD DATE:)ATE: PF	RODUCTION DATE:
JUNE 1990 STATUS: F		CURRENT STATUS:	
PRODUCTION STATION C	ONSTRUCTION DATE:		
AVAILABLE ENVIR	ONMENTAL DOCU	MENTATION	
PRE-AUDIT QUESTIONNAI	RE:	Q YES	
IS SITE SPECIFIC DETAIL . If YES provide a brief summ		Q YES vironmental issues on data sheets	
· · · · · · · · · · · · · · · · · · ·			······································
SPILL RECORDS If YES refer to spill record ar	nd record current evidence	• of spill on data sheets	D NO
PAST REMEDIAL ACTION: If YES provide details		D YES	
HAVE HISTORIC AIR PHOT			5 Q NO
HAS A SITE PLAN BEEN A		L YE	S DINO

R.

₹ ₹

ام. د

£

1

5

ţ.

1

v.

AGRA Limited				SITE NUMBE	ER					
SITE INFRASTRUCTUR	-									
INCLUDE PAST AND PRESENT				v .						
A - Active; B - In place but o				blank if not present						
U - Underground										
	NUMBER /STATUS EVIDENCE OF ENVIRONMENTAL DAMAGE									
	NUMBER /STATUS		E OF EN		AMAGE SITE					
		Yes	No	Yes	No					
	,	_	_	_	_					
FLARE PIT DRILL SUMP WORKOVER PIT	/ /				0					
WASTE PIT	/									
STORAGE TANK	/									
	/				0					
FUEL TANK	/	<u>a</u>								
POPTANK	/			- -						
WELL HEAD	,		<u>.</u>							
	/				9					
SEPARATOR	/									
TREATOR										
PUMP	/		a							
HEATER	/		G	u						
	/									
CHEMICALS	/		<u> </u>							
CHEMICAL LOADOUT	/									
TRANSFORMER	/	a	ā	2						
PIPELINE	/		-							
				_ _	-					
Jinen		-	—	de detail on attach	_					
WASTE MATERIALS PF	RESENT ON SITE	PRES	SENT	DISPOSED O	F ON SITE					
		Yes	No	Yes	No					
		a	a	3	9					
WASTE OIL			0							
			ā							
			9	-						
PRODUCED FLUIDS			ū	- -	2					
FILTERS			ū	u						
SEWAGE			ā	ä						
DOMESTIC GARBAGE			ū							
			<u> </u>							
SCRAP METAL										
OTHER			<u> </u>	<u> </u>	9					

		-		
GENERAL SITE DESC	RIPTION			
ELEV. PAD:	metres	PAD MATERI	AL:	
BERMED: 🖸 YES		BERM MATE	RIAL:	
DRAINAGE:		·····	······································	
IS A DRAINAGE DITCH PRESE	NT? 🖸 YES		AREA DRAINED	
EROSION:				
EROSION CONTROL:				
ESTIMATED CURRENT DISTUR				
VEGETATION ON WELLSITE P				
VEGETATION CONTROL METH			ER:	
ESTIMATED DEPTH TO GROU	NDWATER	m		
TOPOGRAPHY:				
		FRONGLY SLOPING		LY TO STEEPIN SLOP
(0-5°)	(6 -			7 TO >45°)
WELLSITE POSITION ON SLOP	E: CICREST CI			OE 🗅 DEPRESSIO
ADJACENT LANDUSE	-			
DISTANCES ARE MEASURED FROM TH				
DISTANCE TO NEAREST RESIL		m		
DISTANCE TO NEAREST SUR	_	m		
DISTANCE TO NEAREST WET	_	m		
IS THE LAND ADJACENT THE				
AGRICULTURAL LAND USE:				-
HAS ADJACENT LAND BEEN IN				
(if YES provide detail on attached	J data sheets.)			
	UNG SECONDARY FO	REST D SECON		MATURE RAIN FORE
SIZE OF CLEARING (surroundin	g well site or production	n facilities as a result	of oil field developmen	nt)
	NIZERS			
EXTENT OF FOREST REGENE	RATION WITHIN ORIG	SINAL CLEARED AR	EA	
				CONFIDENT PET. 0409

1

ł,

۱,

コラ経

ġ

.

ł

ç

ł

AMPLE SUM	nited al Services MARY		HYDROCARBON ODOUR KEY None = N Faint = F Distinct = D	SITE NUM	BER		-
	ATION		Strong = S				
OCATION	SAMPLE	INTERVAL (cm) FROM TO	TEXTUR	DESCRIPTION E	HYDE	ROCARBO	N
OIL							
		<u> </u>					_
			· · · · · · · · · · · · · · · · · · ·				_
			·				_
		·	·			<u>-</u>	
			· _ 				_
VATER							
<u></u> n		<u> </u>		_		<u> </u>	-
			·				_
			·	······································			
PHOTOGRAPH							
PHOTO NUMBE		DESCRIPTION			DIREC Looking N.		
ROLL PHO	ΟΤΟ			N	S	E D	w
	<u></u>				2		0
						٩	۵
					۵	۵	

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

:

.

APPENDIX E

PHYSICAL IMPACTS RECORDED FOR ASSESSED WELL SITES AND PRODUCTION STATIONS

.

AGRA Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

.

Table E – 1 Physical Impacts, Topography and Adjacent Land Use Recorded For Assessed Well Sites

Ass	essed	Currently	Τορο	graphy (S	Slope)	Proxi	nity to :	Adjacent	
We	Il Site	Disturbed	Gentle	Mod.	Strong	Res.	Creek/	Land Use	Erosion
		Area	0 5	6 - 17	17 – 45		River		Present
		(m2)	Pos	ition on S	lope	Estima	ted (m)	(Type)	Yes or No
LA	1	7,150	Mid	-	-	>200	180	Mixed	No
LA	2	7,200	Mid	-	-	350	300	Grazing	No
LA	5	3,420	Mid		-	40	NA	Mixed	No
LÄ	6	4,950	-	Mid	-	100	100	Grazing	No
LA	8	3,400	Mid	_	-	>200	NA	None	No
LA	9	9,350	Mid	_	-	150	NA	Grazing	No
LA	10	4,500	Mid	-	-	50	15	Mixed	No
LA	11B	12,852	Mid	-	-	20	5	Mixed	No
LA	12	6,900	Mid	-	-	375	NA	Mixed	No
LA	17	7,150	Mid	-	-	500	NA	Mixed	No
LA	19	1,250	Mid	_	_	15	NA	Mixed	No
LA	20	2,730	Mid	_	_	70	NA	Grazing	No
LA	21	4,845	Mid	-	-	70	25	Mixed	No
LA	26	4,700	_	Crest	_	5	25	Mixed	Yes
LA	29	7,875	Mid	_	-	20	100	Mixed	No
LA	32	6,300	Mid	_	-	300	10	Grazing	No
LA	33	7,700	Mid	_	_	50	50	Mixed	No
	34	8,190	Mid		-	150	NA	Mixed	No
LA	35	7,920	Mid			NA	70	Grazing	No
PH	2	2,400	Lower	_	-	100	25	None	No
PH	5	4,000	_	-	Crest	>200		None	Yes
AT	1	12,600	-	_	Crest	NA	NA	None	Yes
AT	2	4,500	_	-	Mid	200	100	None	No
AT	3	5,200		-	Crest	NA	100	None	Yes
GU	1	11,500	Mid	_	0.03	20	1	Mixed	No
GU	3	8,100	-	Mid		100	10	Grazing	No
GU	5	19,500		-	Crest	100	1		Yes
GU	8						1	Grazing	No
AG	AG3	5,000	Mid	_	-	20	NA	Mixed	No
AG		6,780	Mid		-	20		Mixed	
AG	AG6 AG8	11,400		-	Crest	200	200	Mixed	No
AG	AG9	9,025	Mid		-	200	NA	Grazing	No No
AG	AG10	7,000	Mid Mid	-	-	150	100	Plantation	NO
SSF		11,625		-	-	20	30	Grazing	+
SSF	B57	7,900	Mid			>200		Mixed	No
	B59	4,800	Mid		-	150	NA NA	Grazing	No
SSF	61 DCD	14,275	Mid		-	>200		Plantation	No
SSF	B63	10,750		Crest	-	100	10	Plantation	No
SSF	B64	12,000		-	Crest	20	1	Mixed	Yes
SSF	A65	NA	Mid		-	100	NA	None	No
SSF	B66	12,600	-	Toe	-	50	15	Mixed	No
SSF	A67	5,200	Mid		-	>200	>200	Mixed	No

CONFIDENTIAL PET 040963

ł

â

3

석

ĊA1069710

Table E – 1Physical Impacts, Topography and Adjacent Land UseRecorded For Assessed Well Sites

	Adjacent	nity to :	Proxin	lope)	graphy (S	Торос	Currently	essed	Ass
Erosion	Land Use	Creek/	Res.	Strong	Mod.	Gentle	Disturbed	Il Site	We
Present		River	l	17 - 45	6 - 17	0 - 5	Area		
Yes or No	(Type)	ted (m)	Estimat		ition on S	Pos	(m2)		
res or No	(.),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Yes	Grazing	40	>200	- 1	-	Mid	10,200	68	SSF
No	Grazing	20	>200	-	-	Mid	7,496	69	SSF
No	Mixed	20	>200	-	~	Mid	19,425	71	SSF
No	Mixed	NA	NA	-	_	Mid	6,900	WIW2	SSF
No	Mixed	NA	50	-	1	Mid	9,000	WIW4	SSF
No	Mixed	200	100	-	Mid	-	5,200	WIW7	SSF
No	Mixed	70	30	Crest	-	-	4,750	A1	SSF
No	Grazing	>200	>200	_	-	Mid	5,160	A7	SSF
No	None	NA	20	-	-	Mid	1,950	A9	SSF
No	Grazing	20	50		+	Mid	7,800	A10	SSF
No	Mixed	50	40	-	-	Mid	6,500	A13	SSF
No	None	1	NA	-	Lower	-	4,200	B15	SSF
No	None	NA	>200	Crest	-	-	NA	B16	SSF
No	None	NA	150	-	-	Mid	5,750	A20	SSF
No	None	200	NA	-	-	Mid	7,200	A22B	SSF
No	Mixed	20	10	-	1	Mid	3,600	A24	SSF
No	Mixed	25	50	-	-	Mid	3,600	A26	SSF
No	Mixed	50	20	_	-	Crest	3,800	A30	SSF
No	None	1	200	-	Mid	1	5,500	B31	SSF
No	Mixed	70	5	-	-	Mid	6,500	A33	SSF
No	None	>200	>200	-	-	Mid	NA	A34	SSF
No	Mixed	10	>200	-	Mid	-	4,900	B36	SSF
No	Mixed	40	20	-	-	Mid	4,400	A38	SSF
No	Mixed	NA	1	-	_	Mid	6,500	A43	SSF
No	Plantation	>200	75	-	-	Mid	8,000	6 B	SSF
No	Grazing	NA	150	_	-	Mid	4,675	A45	SSF
No	NA	NA	200	-	-	Mid	9,300	A45B	SSF
No	Mixed	200	>200	-	-	Mid	5,500	46	SSF
No	Grazing	NA	150	-	-	Mid	8,025	B49	SSF
No	Grazing	50	30	-		Mid	2,160	A50	SSF
No	Mixed	50	20	ŧ		Mid	3,600	B51	SSF
No	Mixed	150	>200	-		Mid	6,900	B52	SSF
No	Mixed	>200	70		-	Mid	23,000	B 55	SSF
No	Plantation	NA	25	_	· -	Mid	1,000	WIW1	SA
No	Mixed	100	50	_	Mid	-	3,300	WIW2	SA
No	Plantation	NA	50	-	-	Mid	NA	WIW3	SA
No	None	NA	300	_	_	Mid	3,600	WIW4	SA
No	Mixed	NA	50	_		Mid	3,200	WIW5	SA
No	None	NA	NA	-	-	Mid	7,400	WIW6	SA
No	None	50	25	-	-	Mid	3,025	1	SA
No	Mixed	NA	50	-	-	Mid	2,745	2	SA

CA1069711

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Table E – 1
Physical Impacts, Topography and Adjacent Land Use
Recorded For Assessed Well Sites

Ass	essed	Currently	Торо	graphy (S	Slope)	Proxir	nity to :	Adjacent	
We	ell Site	Disturbed	Gentle	Mod.	Strong	Res.	Creek/	Land Use	Erosion
		Area	0 – 5	6 - 17	17 - 45		River		Present
				ition on S		Ectimo		(Turne)	
		(m2)	FUS		lope	ESUITA	ted (m)	(Type)	Yes or No
	,			<u>. </u>					
SA	8	3,300	Upper			15	NA	Plantation	No
SA	9	2,000	Mid		-	100	50	Mixed	Yes
<u>SA</u>	11	4,000	Mid Mid			20 10	NA 20	Plantation	No
SA	12	7,200		-				Mixed	No
SA	13	3,200	Mid		-	NA	>200	Grazing	No
SA	16	4,500	Upper			5	40	Plantation	No
SA	18	2,500	Mid			50	NA	Plantation	No
SA	19	1,000	Mid	-		100	100	Plantation	No
SA	20	1,500	_	Mid	-	30	50	Mixed	No
SA	21	5,750	Upper			NA	NA	Plantation	No
SA	25	5,000	Mid			25	100	Mixed	No
SA	27	5,500	Mid	-	-	20	NA	Mixed	No
SA	28	4,500	Mid	-		>200	100	Grazing	No
SA	32	4,100		Mid		NA_	NA	None	No
SA	33	3,200	Mid	. –		NA	NA	Mixed	No
SA	34	4,500	Mid		-	5	NA	Mixed	No
SA	35	1,000	Mid			5	NA	None	No
SA	36	12,750	Mid		-	NA_	NA		No
SA_	40	1,000	Mid			NA	NA	None	No No
SA_	43	700	Mid			NA	>200	Plantation	No
SA	44	2,625	Mid	-		NA	NA	None	No
SA	46	6,600	Mid	-	-	60	20	Mixed	No
SA	54	1,150	Mid		-	NA	200	None	No
SA	55	1,225	Mid			100	300	Plantation	No
SA	56	1,200	Mid	-	-	>200	NA	Plantation	No
SA	58	5,400	Mid	-		50	NA	Plantation	No
SA	59	NA	Mid	-	-	100	NA	NA	No
SA	60	4,500	Mid		-	200	200	Mixed	No
<u>SA</u>	72	6,600	Mid			>200	>200	Mixed	No
<u>SA</u>	73	NA	Mid	· <u> </u>		200	NA	None	No
SA_	74	5,625	Mid			>200		Mixed	No
SA	75	3,825	Mid			NA	NA	Plantation	No
SA	77	7,700	Upper	-		>200	40	Mixed	No
SA	78	4,240	Mid		-	20	1	Grazing	No
SA	81	11,400	Mid	_		200	NA	None	No
SA	84	8,380	Mid			>200	150	Plantation	No
SA	85	6,000	Upper			20	10	Mixed	No
SA	86	2,650		Mid	-	NA	100	None	No
SA	91	8,700	Mid			NA	NA	None	No
SA	93	6,850	-		Crest	1	100	Mixed	No
SA	94	8,234	Upper	_	-	NA	10	Grazing	No

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CONFIDENTIAL PET 040965

Table E – 1 Physical Impacts, Topography and Adjacent Land Use Recorded For Assessed Well Sites

	Adjacent	nity to :	Proxin	lope)	raphy (S	Topog	Currently	ssed	Asse
Erosion	Land Use	Creek/	Res.	Strong	Mod.	Gentie	Disturbed	Site	Weil
Present		River		17 - 45	6 - 17	0 - 5	Area	{	
Yes or No	(Type)	(m) be	Estimat	ope	tion on S	Pos	(m2)		.*
No	Mixed	NA	200		-	Mid	7,800	95	SA
No	Grazing	10	>200			Mid	5,225	97	SA
No	Plantation	NA	NA			Mid	5,400	100	SA
No	Mixed	10	>200			Mid	6,000	103	SA
No	Plantation	NA	>200			Mid	8,825	104	SA
No	Mixed	100				Mid	12,000	107	SA
No	None	NA	NA			Mid	7,200	109	SA
No	Plantation	NA	50			Mid	6,000	110	SA
No No	None	40	NA	Crest		 Mid	9,600	111	SA
Yes	None None	<u>NA</u>	>200		Mid		5,550 6,600		SA CU
Yes								2	
	None	- 1	>200		Mid		8,400	2	YB
No	Grazing	NA	200		Crest		6,300	4	YU
No	None	NA	200		Mid		5,000	6	YU
No No	Mixed	NA	150		Crest		7,200	5	YU
Yes	None Plantation	<u>100</u> 30	>200		-	Mid	6,000	12	YU
	Plantation	50	1		Upper		14,000	-1	YUS
No			>200	Crest	-		5,000		AU
No No	Plantation None		200		Upper		6,000	4	AU
No	None	<u>NA</u>	>200		Upper	-	6,000	6 7	AU
No	None		NA			Lower	6,000		
No	and the second secon	>200	200		Crest		6,900	9	AU
No	Mixed	100	20	-	Mid	-	6,000	11	AU
	Plantation	30	10	-	-	Mid	5,000	12	AU
No No	None	500	200		Mid		6,000	15	AU
	Plantation	100	>200	_	Upper		6,600	16	AU
No	Plantation	100	>200	-	Crest		5,000	17	AU
No	None	NA	>200		Mid		7,150	18	AU
Yes	Grazing	>200	>200	-	Upper	-	6,000	198	AU
No Yes	None	100	>200		Mid		6,050	21	AU
No	Mixed	100	100 50		Mid		14,400	24	AU
NO	Plantation	50 NA		-	-	Mid	NA		AUS
	None Plantation	NA NA	NA 50		Upper		4,900		RM
No	Plantation	NA	10		Mid		6,900		CN CN
NO	Plantation	10	10			Mid	10,500	2 3	CN
No		5	>200	<u> </u>		Mid	7,700	8	CN
	None	>200				Lower	10,400		CN
Yes	None		>200	Crest	-		9,600	11	CN
Yes	None		>200	Crest			10,400	12	_
ONFIDEN PET 040	None	20	20	Crest			5,800	1	DU

CA1069713

.

) (((((((((((((((((((Currently	Тор	ography (Si	ope)	Proximit	y to :	Adjacent	1
Production	n Station	Disturbed	Gentle	Mod.	Strong	Res.	Creek/	Land Use	Erosio
		Area	0 - 5	6 - 17	17 - 45		River	(b)	Present
		(ha)	Pc	sition on Slo	00	Estimated	(m)	(Түрө)	Yes or N
——			<u></u>						
Lago Agrio	Central	80	Mid	-	-	100	100	Industry	No
	North	10	Mid		-	50	250	Plantation	No
Parahuacu		6	Crest	-		100	0	Forestry	No
Atacapi		3	-	Crest	-	300	50	Mixed	Yes
Guanta		8	Mid	-	-	20	1	Plantation	No
Aguartoo		6	_	Upper	_	200	20	Forestry	Yes
Shushufindi	Central	50	Mid	_	-	20	10	Mixed	No
	North	13	Mid	-	-	20	20	Plantation	No
	South	15	Mid	-	_	300	300	Plantation	No
	Southwest	16	Mid	-	-	100	10	Mixed	No
	Water Inj.		-	-	Crest	250	10	Grazing	No
Sacha	Central	47	Mid		_	50	700	Mixed	No
[North # 1	20	Mid	-	-	40	20	Plantation	No
[North # 2	9	MId	-	-	50	150	Mixed	No
ſ	South	5	Mid	-	-	10	10	Mixed	No

Table E - 2Physical Impacts, Topography and Adjacent Land UseRecorded For Production Stations

CA1069714

PE

IDENTIAL 040967

		Currently	Top	pography (Sid	ppe) 💈	Proximi	ty to :	Adjacent	T
Productio	n Station	Disturbed	Gentie	Mod.	Strong	Res.	Creek/	Land Use	Erosion
		Area	0-5	6 - 17	17 - 45		River	(b)	Present (c
		(ha)	Po	osition on Slo	00 0	Estimate	d (m)	(Тура)	Yes or No
	1		<u> </u>						
Culebra		2	_	Upper		20	NA	Plantation	No
Yulebra		3	Upper	-	-	800	30	Mixed	No
Yuca		12		Upper	-	300	100	Forestry	Yes
Auca	Central	30	-	Upper	_		100	Mixed	Yes
	South	9	-	Crest	-	200	50	Forestry	Yes '
uca Sur		2	Mid	-	-	50	20	Plantation	Yes
ononaco		8	Upper	-		20	NA	Plantation	No
Dureno		1	_		Crest	20	20	Forestry	Yes

Table E - 2Physical Impacts, Topography and Adjacent Land UseRecorded For Production Stations

(a) Excludes marginal regeneration adjacent site boundaries.

(b) Agricultural types (ie. plantation and grazing) noted when immediately adjacent site boundaries.

(c) Where erosion impact is present, details are provided in Table 6 - .

CA1069715

CONFIDENTIAL PET 040968

APPENDIX F

CONTAMINANT OBSERVATIONS FOR ASSESSED WELL SITES, PRODUCTION STATIONS AND SECONDARY PIPELINES

AGRA Earth & Environmental Group

CA1069716

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

•									

Table F – 1

Summary of Contaminant Observations For Assessed Well Sites

Asse	assed	Produced Fluid Spills From:					Solid Waste Refined Product Present Spills								
S	ite	Well	Flowline	Pump	Tank	Flare	Ind.	Dom.	Oil	Chem.	Fuel	#1	#2	#3	
Yes	The s	has been id pill has migra nigrated bey	ated off the			ints	No -	The feat	ure is not	n identified. present on th Dom. = Dome] Cove P	ered it	
LA	1	Yes	No	Yes	_	_		_	-		-		_	_	
LA	2	Yes	No	-		-	Yes		Yes	No		No	No	-	
LA	5	Yes	No	*			-	Yes	-	-	-			-	
LA	6	No	No	-	-	-	-		-	_	-			-	
LA	8	Yes	No	-	-	-	-	Yes	-	-	-	-	-	. —	
LA	9	No	No	_	Yes		-	-	_	-	_			'	
LA	10	Yes	. Yes	-	-	_	Yes	-	-	-		No		-	
LA	11B	Yes	Yes		-	_	_		-	-	_	No]		
LA	12	Yes	Yes	-	-	-	Yes	-	Yes	-	_	_	-	·	
LA	17	No	No	-	-	-	-	-	-	-	-	_	-	-	
LA	19	No	No		-	-	_		-	-	-	-	· _	-	
LA	20	Yes	No	· _	-			-	-	-		_	-	-	
LA	21	Yes	No		-		Yes	-	Yes	-	_			-	
LA	26	NO S	No		-	-	-	-		No	-	_	-		
LA	29	Yes	Yes	-	-	-	-	-	-	No	-	-	-	-	
LA	32	Yes	No	-	-			-	-	-	-	-	—	-	
LA	33	Yes	No		-		-	-	-	-		-		-	
LA	34	Yes	No		-	-		-		-	-				
LA	35	Yes	No	_	_	—	-	-	-	_		-	_	-	
PH	2	an Steps	No		-	-		-		-	-	-	-	-	
PH	5	N/CIS	No	-	-	-	Yes	_	—	-	-	—		-	
AT	1	No	Yes	Yes	. —	_		-	-	No	-	No	No	-	
AT	2	No	No	Yes	-			-	-	No		Yes		-	

Table F – 1Summary of Contaminant Observations For Assessed Well Sites

Asse	ssed		Produc	ed Fluic From:	l Spills		ł .	l Waste esent	Refi	ned Pro Spills	duct		Pits	
Si	te	Well	Flowline	Pump	Tank	Flare	Ind.	Dom.	Oil	Chem.	Fuel	#1	#2	#:
Yes Yes	The sp	-	dentified. rated off the v yond the cor			nts	No –	The fea	has not been ature is not pr Industrial, Do	esent on th			Cove Pi	
<u></u>	- Have II	ingrated be	yond the con		<u></u>									
AT	3	Yes	No	-	-	_	-		-	-	-	No	-	-
GU	1	Yes	No	-	_	-	Yes	-	Yes	No	-	Yes	Yes	—
GU	3	No	No		-	-	Yes	-	-	_	-	Yes	-	_
GU	5	No		àY(c)C)	N/CS	Yes	Yes		Yes	-	Yes	NZ94		-
GU	8	Ve	Yara	-	-	-	-	-		-		-	-	_
AG	AG3	Yes	No	-	-	-	Yes	-	Yes	-		Yes		'-
AG	AG6	No	No	-	-	-	-	-	-	-	_	N	<u> 103</u>	-
AG	AG8	No	No	_	-	-	-	-	_	-	-	Yes	-	
AG	AG9	Yes	Yes	-		-	Yes	-	Yes	-	-	Yes	_	
AG	AG10	Yes	No	-	-	-	-	-	-	No	-	Yea	Yes	-
SSF	B57	Yes	No	-	-	-	Yes	-	Yes	Yes	-	Yes	-	
SSF	B59	Yes	No		-	-	-	-	-	Yes		Yes	-	_
SSF	61	Yes	No	-	-	-		-	-	No	—	Yesh	Yes	-
SSF	B63	Yes	No	-	-		Yes	-	Yes	-	_	Yes .	Yes	
SSF	B64	Yes	No		-		_	Yes		-	-	Yes	_	-
റ SSF	A65	Yes	No	_	-	_	-		—	-	_	-	-	
SSF	B66	Yes	No	_	-	-	-	-	-	-	-	Yes	-	-
SSF	A67	Yes	No	-	-	-	Yes	-	Yes	No	-	Yes	No	-
SSF	68	Yes	No		-		-	-	-	No		YCEI	-	-
SSF SSF SSF SSF SSF SSF SSF SSF	69	Yes	Yes	-	-	_	-	-	-	No	_	No	No	
SSF	71	Yes	Yes	-	-	-		_	-	-	-	Yes	No	No
SSF	WW2	No	No					-	-	-		No		-
SSF	WIW4	No	No	-	-	-	-	Yes _				No	<u> </u>	-

۲	44	4		a .	·• .•	 	 עד, איי בא⊷	

Table F – 1Summary of Contaminant Observations For Assessed Well Sites

Assessed Site		Produc	ed Flui From:	d Spills		Solid V Pres	e sergadore i se s	Ref	ined Pro Spills			Pits		
^{≥l} ≲it	e	Well	Flowline	Pump	Tank	Flare	Ind.	Dom.	Oil	Chem.	Fuel	#1	#2	#3
Yes Yes	The sp	-			r contaminan 1e pit.	its	No -	The leal	ture is not p	n identified present on t om. = Dor	the site.		Cov	
SSF SSF SSF	WIW7 A1 A7	No Yes Yes	No No No	-	-	-		-	-	-	-	No Yes Yes		
SSF SSF SSF	A9 A10	Yes	No No	-	-	-	_ _ _	_ Yes	-	No ~	-			_ _
SSF SSF SSF	A13 B15 B16	Yes Yes No	Yes No No	Yes _	-	-	- - -	 Yes Yes	-	No 	-	Yes Yes Yes	No -	'
SSF SSF SSF	A20 A22B	Yes Yes	No Yes	-	-	- -	Yes -	- -	Yes	No Yes	-	Yes Yes	-	-
SSF SSF	A24 A26	Yes Yes	Yes No	- ·	-	- -	-	- -	-	No _	-	Yes	_ _ Yés.	 - -
SSF SSF SSF	A30 B31 A33	No Yes No	No No No	-		-	Yes	Yes -	Yes -	_ No _		Yes Yes Yes	- -	
SSF SSF	A34 B36	_ Lines	No	-	-	- -	_ Yes	- -	– Yes	– No	-	Yes	- -	
SSF SSF SSF	A38 A43 6B	Yes Yes Yes	No No Yes		-	-		- - -	- - -	- - No	-	Yes Yes Yes	- Yes -] _
SSF SSF	A45 A45B	Yes Yes	Yes Yes	Yes -	_	-	-	Yes _	. -	_ No	-	No Yes	– No	-
SSF	46	Yas	No	-	Yes	_	Yes	Yes	Yes	-	Yps	Yes	—	

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069719

CA1069719

i

Table F - 1

Summary of Contaminant Observations For Assessed Well Sites

Asse	essed		Produc	ed Fluid From:	d Spills		Solid N Pres	i i Mari	Refi	Pits				
	ite	Well	Flowline	Pump	Tank	Flare	ind.	Dom.	Oil	Spills Chem.	Fuel	#1	#2	#3
Yes Yes	The sp	-	dentified. rated off the v yond the con			nts	No -	The feat	as not been ture is not pr ndustrial, Do	esent on th			Cove Pit	
SSF	B49	Yes	No		-	-	-	_		-	-	Yes	Yee	-
SSF	A50	No	No	-	-	-	-	-	-	-	-	-	-	-
SSF	B51	Yes	No		-			-	-	-	-	Yes	-	-
SSF	B52	Yes	Yesee	-	-	-	-	-	-	No	-	-	-	
SSF	B55	No	No	-	-	-	-	-	_	-	-	Yes	-	-
SA	WIW1	No	No	-	-			-	-	-	-	_	-	ʻ
SA	WIW2	Yes	No		-	-	-	-	-	-	-	Yes	Yes	-
SA	WIW3	No	No	-	_			-	-	-	-	No	-	_
SA	WIW4	No	No	-	-	-	Yes		-	_	_	Yes	-	-
SA	WIW5	No	No	-		-	-	-		-		YCS		-
SA	WIW6	No	No	-	_	-	-		_			Yes	Yes	_
SA	1	Yes	No		-		Yes	-	Weiss .	-		-	-	-
SA	2	No	No	-		-	-	_		No	_	No	-	-
SA	8	Yes	Yes		-	-	-		-	-		Yes		-
SA	9	Yes	No		-	-		-	-		_		_	-
	11	Yes	No		-		-	-			-	Yes		
CONTRACTOR	12	Yes	No		-	-		-	-	-	-	1.95	-	-
SA	13	Yes	Yes	_	-	-	-			-		No	No	_
SA	16	Yes	No	-	-	-	-	-	-	-	_	NOD.	_	
- SA	18	Yes	Yes	-	-		-			_		N.C.C.	_	_
	19	Yes	No	-	-	-	_	-	-		-	Yea	-	-
SA	20	Yes	No	-		-	-	-	-	-	-	Yes		-
SA	21	Yes	Yes	-	_		-	-	-			Yes	Yes	-

CA1069720

Table F - 1 Summary of Contaminant Observations For Assessed Well Sites

Asses	sed	· ·	Produc	ed Fluic From:	I Spills	Solid V Pres		Ref	Pits					
Site	Э	Well	Flowline	Pump	Tank	Flare	Ind.	Dom.	Oil	Chem.	Fuel	#1	#2	#:
Yes Yes	The sp	-	lentified. ated off the v yond the cor			nts	No -	A spill h The feat Ind. = Ir		Covered Pit				
SA	25	Yes	No	_	-	-	_	_	-		-	Yes	-	
SA	27	NCC	No	-	-		-		-	-		_	-	-
SA	28	Yes	Yes				Yes	-		-	-	-		-
SA	32	Yes	No	-	-	-	Yes		-	No	-	Yes	No	-
SA	33	Yes	No	-			-	-	-	-	-	Yes	Yes	- ,
SA	34	Yes	Y98	-	-	-		-		-	-		-	'-
SA	35	Yes	No	-	-		-	-	-	-	-	-	_	-
SA	36	Yes	Yes	Yes	Yes	-	-	-	Yes	Yes	Yes	Yes	-	-
SA	40	No	No	-		-	-	Yes	-	-	-		_	-
SA	43	Yes	No	-		-	-	-	-	_		Yee	-	-
SA	44	No	No	-	-	-	-	-		No	-	Yes		•
SA	46	Yes	Yee	•	-	-	-	-	-	-	_	Yes	No	-
SA	54	Yes	No	-		-	-	-	-	-	-	Yes	-	-
SA	55	S. (23)	No	-	-		-			-	-	Yes	-	-
SA	56	No	No	-	-	- .	-	-	-	-	-		-	-
SA	58	No.com	No			-	-	-	-	No		Yesi	Yes	-
SA	59	Yes	Yes			-	-	-		-		Yest	-	-
SA	60	Yes	No	-	-		-	_	-			Yes	-	•
SA	72	Yes	No	-		-	-		-	-	-	Yes	No	-
· • •	73	Yes	-	-	-	-	-		-				-	-
SA SA SA	74	Yes	No		_	-	-	-		-		Yes		-
SA	75	Yes	No		-		-	_		. —	-	Yes	No	-
SA	77	Yes	No	-	-	-	_	Yes			-	Yes	-	-

CA1069721

Table F = 1Summary of Contaminant Observations For Assessed Well Sites

Asses	sed		Produc	ed Fluic From:	d Spills	•••		Waste sent	Refi	Refined Product Spills						
Site		Well	Flowline		Tank	Flare	Ind.	Dom.	Qil	Chem.	Fuel	#1	#2	#:		
Yes	A spill	has been l	dentified.				No	A spill has not been identified.								
Yes	•	-	rated off the			nts	-		ature is not p			F	Pit			
<u>-</u>	have n	nigrated be	yond the cor	nfines of the	e pit.			Ind. =			<u>-</u>					
SA	78	Yes	Yes	_	-	_	Yes	_	-	_	-	Yes	-	_		
SA	81	Yes	No	-	_	-		Yes	-	-	-	Yes	-	-		
SA	84	Yes	Yes		_	-		-	-	-	-	Yes	No	-		
SA	85	Yes	No	-	-		Yes		-	-		Yes	-	-		
SA	86	Yes	No		-	-	-	-	-	-	-	Yes	No	_		
SA	91	No	No	-	-	-	-	-	-	-	-	Yes	No	'-		
SA	93	Yes	Yes	_	-	-		-	-	-	-	Yee	-	_		
SA	94	Yes	No	_	-	-	Yes	Yes		-		Yes	Yes			
SA	95	Yes	No	-	-		-	-	-	-	-	NGS-	<u></u>	N		
SA	97	Yes	Yes	-	-	-	-	-		-	-	NG3.	-			
SA	100	Yes	No	_	-	-	-	-	-	-	-	Yes	-			
SA	103	Yes	No	_	-	-	Yes	Yes	· _	-		Yes	No			
SA	104	Yes	No		-	_		-	-	-	-	Yes	-	_		
SA	107	Yes	Yes	_	-		-	-	-	-	-	Yes	-	-		
SA	109	Yes	No	-	_	-		-	-	-	-	Yea	No	-		
SA	110	Yes	No		-	-	-	-				Yes	-	-		
SA	111	Yes	No	-	_		_	-	-	-	_	Yes	-	-		
SA	113	Yes	_	-	_	-	-		-		_	Yes	-			
	2	Yes	No	-	-	-	Yes	-	Yes	-	-	Yes		_		
YB YU	2	No	No	-	_	-	Yes	-	Yes		Yes	Yes	-	-		
YU	4	Yes	Yes	-	-	-	-	-	-	_	-	Yes	-	-		
YU	6	-	-	-	-	_	-	Yes		_		No	-	_ 		
YU	5	Yes	No	_	Yes		Yes	-	N.CS.	-	-	Yes	Yes	Yes		

CA1069722

Table F - 1Summary of Contaminant Observations For Assessed Well Sites

Δοροά	and		Produc		d Spills			Waste sent	Refir	Pits				
Asses			Elau Rad	From:	Teels					Spills	1		"	
Site		Well	Flowline	Pump	Tank	Flare	Ind.	Dom.	Oil	Chem.	Fuel	#1	#2	#3
Yes	A spill	has been id	entified.				No	A spill t		Cov	ered			
Yes	-	-	ated off the v			nts	- 1	The fea		'it				
	have n	nigrated bey	ond the con	fines of th	e pit.			Ind. =	Industrial, Do	m. = Dor	nestic			
YU	12	Yes	Yes	_	-	_	-	_		Yes		Yes	-	-
YUS	1	Yes	No	_	-	-		_		Yes	-	Yes	-	
AU	1	Yes	No			-		-		-		Yes	-	-
AU	4	Yes	No	Yes	Yes	No	Yes	-	Yes	No	Yes	Yes	-	-
AU	6	Yes	No	-	-	-	Yes	-	Yes	-	-	Yes	-	. –
AU	7	Yes	No	-	-	-		-		-	-	No		'
AU	9	No	Yes	-		-	-	-	-	No		No	-	-
AU	11	Yes	Yes	_	-	-		-		No	-	Y09 .	_	-
AU	12	Yes	Yes	-	_	-	-		_		-	Yes	-	-
AU	15	Yes	Yes	-	~	-	-	-	-	Yes	-	Yes	-	-
AU	16	Yes	No	-	-	-	-	_ `	-		-	Yes	-	-
AU	17	Yes	Yes	·	-	-	-	Yes	-		_	Yes	Yes	-
AU	18	Yes	Yes	-	-	-	-	-		-			-	
AU	19B	Yes	Yes	-		-	-	-	-	-	-	Yes	-	-
AU	21	Yes	Yes	-		-	Yes	-	-		-	Yea	-	
AU	24	No	No	-	-	-		Yes			-	Yes	No	
AUS	1	Yes	Yes	Yes	Yes	No	-	-	e Yes		ШХөэ .ш	Yes	No	Yes
RM	1	Yes	No	-		-	-		-	-	-	Yes	-	_
CN	1	Yes	No	-		-	-	Yes	-	-	-	Yes		-
CN	2	No	No				-	-	-	_	-	Yes	-	-
i CN	3	No	No		-	-	-	-		-		No	-	
CN	8	No	No		-	-	-		-	-	-	No		-
CN	11	Yes	No		-	_	-	-	-			~		

CA1069723

Table F - 1

Summary of Contaminant Observations For Assessed Well Sites

Asse	essed		Produc	ed Fluic From:	d Spills		Solid V Pres		Refi	ned Proc Spills	Pits			
S	ite 🦾	Well	Flowline	Pump	Tank	Flare	Ind.	Dom.	Oil	Chem.	Fuel	#1	#2	#3
Yes	The sp	-	lentified. ated off the v yond the cor			ants	No _	A spill has not been identified. Cov The feature is not present on the site. P Ind. = Industrial, Dom. = Domestic						
CN DU	12 1	Yes No	No No	– Yes	_ Yes	- Y as Ji	Yes _	Yes -	Yes -	-	-	Yes Yes	-	-
Sites Total (All Cond	Yes ditions)	126	41	10	8	2	32	20	23	7	6	107	17	, 3
Total No		35	118	0	0	2	0	0	0	27	0	18	19	2
Total –		2	4	153	155	159	131	143	140	129	157	38	127	158
Totals		163	163	163	163	163	163	163	163	163	163	163	163	163
Total	Yes	109	28	6	6	1	32	20	16	7	3	39	9	2
Total	Stes il	- 17	13	4	2	1	_	-	7	0	3	36	6	1
Total		CONFID	-	-	-	_	-	_	-	-	_	31	2	0
Total	No	10ENTIA 040977	-	_	_	-		-	_			10	3	0

								Ta	ble F	- 2					•		
					D	escrip	tion of	Produc	ced Flu	lia Spil	is iden	tified I	For				
						•	ites, Flo			•							
						·	·		·	• •	·····						
	Ass	essed	We	Il Site Sp		· · · · · · · · · · · · · · · · · · ·	wline Sp			ump Spil			ank Spill		L	lare Spill	S
				Esti	mated	Spill Dim	ensions	(Area	in squar	e metres	, Depth	in metre	s, Volun	ie in cu	bic metr	es)	
		Site	Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Val.	Area	Depth	Vol.	Area	Depth	Vol.
				The s	oill has	migrated	d off the	well site).]	The s	pill has	affected	water.			
	LA	1	10	0.1	1					(b) si	() () () ()		<u> </u>		<u></u>		
	LA	2	20	0.1	2												
	LA	5	10	0.3	3												
	LA	8	20	0.1	2												
	LA	10	50	0.1	5	E.		5									
	LA	11B	10	0.1	1	10	0.1	1									
	LA	12	15	0.1	1.5	15	0.1	1.5									
	LA	20	15	0.1	1.5												
	LA	21	100	0.2	20												
	LA	26	40	0.1	4												
	LA	29	250	0.2	50	250	0.2	50									
	LA	32	15	0.1	1.5	-											
	LA	33	25	0.2	5												
	LA	34	200	0.1	20												
	LA	35	15	0.1	1.5	l											
	PH	2	(() ()) ()()()()()()()()()()()()()()()()(() () ()	(1773) (253												
	PH	5		19493	(A)	10	0.2	2	35	0.3	10.5						
ř	AT AT	1				10	0.2	2		0.3							
_		2 3	100	0.1	10					. (* * * * * * * * * * * * * * * * * * *							
040		1	50	0.1	10												
/ BC	IDEN GU	5	50	0.2	10				100	0.5	50	50	0.2	10	25	0.5	12.5
α		8	1000		100		0.2										
		U	X 107 11, 500 1-12 - 160														

-

.

...

burger

ļ

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

!

Table F – 2 Description of Produced Fluid Spills Identified For Well Sites, Flowlines, Pumps, Tanks and Flares

Assessed	Well Site S	oills	Flowline Sp	oills 🚽	Pu	imp Spill	S	्रा	ank Spil	ls	F	lare Spill	s
	Est	imated Spil	I Dimensions	(Area	in square	metres,	Depth i	in metre	s, Volur	ne in cu	bic metr	es)	
Site	Area Depth	Vol. A	rea Depth	Vol.	Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Vol.

			The sp	oill has m	nigrated	off the w	ell site.	Ĺ]	The sp	ill has a	ffected	water.				
AG	AG3	100	0.5	50										<u> </u>			-
AG	AG9	40	0.2	8	40	0.2	8										
AG	AG10	80	0.2	16													
SSF	B57	50	0.5	25													
SSF	B59	40	0.2	8			•										
SSF	61	5	0.2	1												ı	
SSF	B63	10	0.5	5													
SSF	B64	10	0.1	1													
SSF	A65	250	0.2	50													
SSF	B66	10	0.1	1													
SSF	A67	10	0.1	1													
SSF	68	50	0.2	10											•		
SSF	69	15	0.2	3	15	0.2	3										
SSF	71	20	0.2	4	2.3 (8	<u></u>	3303										
SSF	A1	10	0.2	2													
SSF	A7	20	0.2	4													
SSF	A9 P.O.	10	0.1	1													
SSF	A10 비고	400	0.1	40													
SSF	A13 운뷰	15	0.2	3	10	0.1	1	20	0.2	4							
SSF	A13 04 MA	5	0.1	0.5													
SSF	A20 9 A	20	0.2	4													
SSF	A22	4	0.5	2	4	0.5	2										
SSF	A24	25	0.2	5	25	0.2	5									_	
اليدي										.							₩ ₽

Ass	essed	We	II Site Sp	oills	Flo	wline Sp	oills	P	ump Spil	lls	۲	ank Spil	s	F	Flare Spill	S
	:' 		Est	imated S	Spill Din	nensions	(Area	in squa	re metres	, Depth	n in metre	es, Volun	ne in cu	bic met	res)	
	Site 👘	Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Vol.
			The s	pill has	migrate	d off the	well site).		The	spill has	affected	water.			
SSF	A26	60	0.3	18												
SSF	B31	50	0.1	5												
SSF	B36	((6)(2)	C (73)												
SSF	A38	300	0.2	60												
SSF	A43	200	0.2	40								·				
SSF	6B	100	0.5	50	50	0.5	25									
SSF	A45	5	0.1	0.5	(\$) }	(i)(i)	5 8	(¢,*)	0(3)	ંં	1					
SSF	A45B	10	0.2	2	10	0.2	2									
SSF	46		6	(s(s))							100	0.3	30			
SSF	B49	5	0.2	1												
SSF	B51	200	0.2	40												
SSF	B52	40	0.2	8	() () ()	(i)	1:S									
SA	WIW2	100	0.2	20												
SA	1		\$2.6	(i e (s)												
SA	8	40	0.2	8	40	0.2	8									
SA	9	15	0.2	3												
SA	11	- 1. Z.S.	(à))	73.3												
SA	12	50	0.2	10												
⊇ SA	13	100	0.2	20												
≝ SA	16	25	0.2	5												
¦ SA	18	50	0.2	10	25	0.2	5									
SA 🖞	19	20	0.1	2												
CONFIDENTIA	20	150	0.2	30												

Table F – 2 Description of Produced Fluid Spills Identified For Well Sites, Flowlines, Pumps, Tanks and Flares ₽ ur

CA1069727

Table F - 2 Description of Produced Fluid Spills Identified For Well Sites, Flowlines, Pumps, Tanks and Flares

Ass	essed	<u> </u>	II Site Sp	ills	Flo	wline Sp	ills	P	ump Spi	lls	٦	ank Spil	S		Flare Spil	IS
			Esti	mated	Spill Din	nensions	(Area	in squar	e metres	, Depth	in metre	es, Volun	ne in cu	ibic met	res)	
S	Site	Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Val.	Area	Depth	Vol.	Area	Depth	Vol.
			The sp	oill has	migrated	d off the	well site).		The	spill has	affected	water.			
SA	21	15	0.3	4.5	15	0.3	4.5									
SA	25	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	े ः (३ ३२२ - ?	<u> </u>												
SA	27	 	્ (દ્ર •ે													
SA	28	100	0.2	20	sa si	1889 - A										
SA	32	150	0.5	75												,
SA	33	400	0.2	80				1								•
SA	34	100	0.2	20		~ 102	S. 3									
SA	35	10	0.2	2												
SA	36	80	0.2	16	(8,8) (8,8)	(8) (2)	248	100	0.2	20	15	0.5	7.5			
SA	43	200	0.2	40				1								
SA	46	20	0.2	4	<u> - e</u> ess	(1)(2)										
SA	54	15	0.3	4.5												
SA	55	201 - 3873)	بعيه فتكفح ومعق													
SA	58 50	200 25	0.2	5	150	0.1	15									
SA SA	59 60	25 300	0.2	5 60	100	0.1	15									
SA	72	150	0.2	45												
SA	73	500	0.3	100												
SA	74	60	0.5	30												
SA SA	75	150	0.3	45												
SA	77	10	0.2	2												
SA	78	22.29	() () ()	(1 7 45)	(); (); ();	(0)(.										
SA	81	100	0.2	20												

CA1069728

CA1069728

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378	
TMENT REQ	Assessed Site
UESTED	
	SA 84

	As	sessed	We	ell Site Sp	ills	Flo	owline Sp	oills	P	ump Spil	ls	T	ank Spill	s	F	lare Spil
				Esti	mated	Spill Din	nensions	(Area	in squai	e metres	, Depth	in metre	s, Volum	ne in cul	bic metr	es)
		Site	Area	Depth	- 7 - 87 X X	Area	Depth		Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth
						_				[]				_		
				The s	oill has	migrate	d off the	well site	Ð.		The	spill has	affected	water.		
	SA	84	25	0.2	5	25	0.2	5			- .	<u> </u>				
	SA	85	150	0.2	30	_										
	SA	86	(č, š, š)	(i), </td <td>(ř))</td> <td></td>	(ř))											
	SA	93	25	0.3	7.5	25	0.3	7.5								
•	SA		300	0.2	60											
	SA		100	0.2	20	COLUMN TWO IS NOT THE OWNER.			-							
	SA		20	0.1	2	(* C*3)	<u></u>	a de la companya de l							•	
	SA	100	100	0.1	10											
	SA		200	0.2	40											
	SA		200	0.1	20											
	SA	107	100	0.5	50											
1	SA	109	200	0.2	40	•										
	SA	110	20	0.2	4											
	SA	111	100	0.2	20											
	SA	113	15	0.2	3											
	CU	2	175	0.1	17.5											
	. 🗋 YU	4	10	0.2	2	······································		\$: ¢ , 8								
	-pg YU	5	100	1	100				~			20	0.5	10		
	미옥 YU	12	10	0.5	5		<u> </u>	000 A.S.								
	୍ର ପ୍ରି YU	51	200	0.2	40											
1		1	6	0.5	3											
	CONFIDENTIAL PET 040982	4	40	0.5	20											
	AL	6	600		100							25	0.5	12.5		

Table F - 2 Description of Produced Fluid Spills Identified For Well Sites, Flowlines, Pumps, Tanks and Flares

ы.

Flare Spills

Vol.

CA1069729

Table F - 2Description of Produced Fluid Spills Identified For

Well Sites, Flowlines, Pumps, Tanks and Flares

Asse	essed	We	ll Site Sp	bills	Flo	wline Sp	oills	P	ump Spil	IS	1	ank Spill	9		lare Spil	s
			Est	imated	Spill Din	ensions	(Area	in squar	e metres,	Depth	in metre	s, Volum	e in cu	bic metr	es)	
S	ite	Агеа	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Vol.	Area	Depth	Vol.
			The s	pill has	migrated	d off the	well site	.		The s	spill has	affected	water.			
AU	7	Si.	8 >				···				·					
AU	9				20	0.2	4									
N U	_ 11 (,	50	0.3	15	40	0.3	12									
U	12		0.3	15	30	0.3	9									
N U	15	ji 40	0.5	20	15	0.2	3									
NU	16	舌型 10	0.2	2												ı
U	17	60	0.5	30	10	0.5	5									
N	18 🗄	ũ₽ 10	0.5	5	10	0.5	5									
N	19B	60	0.5	30	20	0.5	10									
١U	21	100	0.2	20	10	0.5	5									
US	1	10	0.2	2	10	0.2	2	(a)			(a)					
MF	1	75	0.1	7.5												
CN	1	10	0.3	3												
CN	11			(6,8)												
CN	12	200	0.2	40			•									
JU	1							(a)			(a)			(a)		
otals	(Rour	nded)		3,700			3,500			150			70			1(

Note : Estimates of spill area, depth and volume are based on a very limited amount of data. More reliable estimates cannot be prepared without additional field data.

. 1

e

CONFIDENTIAL TRE SDNY - 04 CIV 8378			Descri	ption of Re		able F – 3 oduct Spills	Identified f	For Well	l Sites		
TREATMENT REQUESTED 8378		essed ite	Estima	Used Oil Ited Spill Dim Depth	iensions (Val.	Area in square		h in metro Vol.	es, Volume Area	Fuel in cubic me Depth	etres) Vo
NT REQ				The spill ha	is migrated	I off the site.			The spill I	has affected	water.
UESTE	LA	2	15	0.3	4.5						
Ü	LA	12	4	1	4						
	LA	21	2	1	2						
	GU	1	60 B		(3 ⁶ 6)						
ľ	GU	5							20	1	
	AG	AG3	2	1	2						
	SSF	B59				10	0.1	1			

B63

A20

A22B

B36

46

1

36

2

2

5

12

1

SSF

SSF

SSF

SSF

SSF

SA

SA

Cυ

YΒ

YU

YU

YUS

PE

IDENTIAL 040984

e site.			The spill has	affected wat	ter.

			20	1	20
10	0.1	1			
5	0.1	0.5			
				0.3	15
20	0.5	10	80	0.5	40
			150	1.5	225
10	1	10			
5	1	5			

1

1

Vol.

Table F - 3 efined Product Spills Identified For Well Sites

2.5

0.8

25

15

50

1.2

16.

0.5

0.2

1

0.3

0.5

0.3

10)3

(3).(1)

5

4

25

50

(22) (22)

100

4 2.76)

175

CA1069731

Asses	sed		Used Oil		C	hemicals		Fue	l
Site		Estirr	nated Spill Din	nensions	Area in square	metres, Dep	oth in metres	, Volume in cubi	c metres)
		Area	Depth	Vol.	Area	Depth	Vol.	Area Dept	h Vol.
			The spill h	as migrate	d off the site.		·	The spill has affe	cted water.
AU	4								(1)!
AU	6	15	0.5	7.5					
AU	15				15	0.5	7.5		
AUS	1								
tals (Rou	nded)			400			30		400

 Table F – 3

 Description of Refined Product Spills Identified For Well Sites

Well site AUS1 is located at a production station.

Filters are present in pits at well sites AG9, SSFB57, SSFA67, SSFB31, and CN12 however, the presence of used oil has not been assumed.

Note : Estimates of spill area, depth and volume are based on a very limited amount of data.

More reliable estimates cannot be prepared without additional field data.

Table F – 4 Description of Solid Waste Present at Well Sites

	essed Site	Description of Industrial Waste Located on the Site	Description of Domestic Waste Located on the Site
LA	2	Several used oil filters and associated oil spill.	
LA .	5		One small mound of domestic garbage.
LA	8		One pile of garbage including broken concrete and pipe
LA	10		One small mound of domestic garbage.
LA	12	Oily soil (approx. 3 m3) pile on site.	
LA	21	Oily soil and refuse (approx. 3 m3) pile on site.	
PH	5	Metalic debris and oily soil mound present (5 m3).	
GU	1	Filters & oil in 2 m2 pit – oil migrating out of pit.	
GU	3	Filters & oily soil dumped beside sile (10 m3).	'
GU	5	Filters & used oil dumped adjacent pumps.	
AG	AG3	Metalic debris and filters present.	
AG	AG9	Metalic debris and filters dumped into pit.	
SSF	B57	Filters dumped into pit.	
SSF	B63	Filters dumped into pit and on edge of site.	
SSF	B64		Site used as landfill. Very large volume of waste present
SSF	A67	Metalic debris and filters dumped into pit.	
SSF	WIW4		One small mound of domestic garbage.
SSF	A10		Some garbage from adjacent community centre.
SSF	B15		Site used as landfill. Large volume of waste present.
SSF	B16		Site used as landfill. Very large volume of waste present
SSF	A20	Filters dumped on well site.	
SSF	B 31	Metalic debris and filters dumped into pit.	Small amount of domestic garbage present.
SSF	B 36	Metallic debris, filters and waste soil dumped (25 m3).	
SSF	A45		Garbage present in a 4 m2 pit.
SSF	46	Filters & used oil dumped adjacent pumps.	Garbage recently covered at edge of site.

CONFIDENTIAL PET 040986

Table F - 4Description of Solid Waste Present at Well Sites

	essed Site	Description of Industrial Waste Located on the Site	Description of Domestic Waste Located on the Site
SA	WIW4	Metal and plastic debris on site. (Small amount)	
SA	1	Scrap metal and construction debris dumped.	
SA	28	Metalic debris and filters at edge of site. (2 m3)	
SA	32	Oily soil mound (15 m3) present on site.	
SA	40		Several truckloads of garbage dumped on pad.
SA	77		Small amount of domestic garbage present.
SA	78	Large tank dumped into pit.	
SA	81		Domestic garbage present in oil pit.
SA	85	Steel cable present on site.	1
SA	94	Metallic debris dumped into oll pit.	Domestic garbage present (30 m3).
SA	103	Domestic and industrial waste combined. Drums, filter	s, waste soil, wood and paper (40 m3).
CU	2	Several filters dumped.	
YB	2	Filters & used oil dumped adjacent pumps.	
YU	6		Domestic garbage covers 400 m2. Dump area overgrown
YU	5	Dumped drums and waste oil flow off site 20 m.	
AU	4	Filters & used oil dumped adjacent pumps.	
AU	6	Filters & used oil dumped adjacent pumps.	
AU	17		Domestic garbage present at two locations (50 m3).
AU	21	Scrap pipe on site.	
AU	24		Domestic garbage present (20 m3). Mainly wood.
CN	1		Small amount of domestic garbage and metal on slope.
CN	12	Filters and wood dumped into oil pit.	Domestic garbage dumped down slope (several loads).

1

CONFIDENTIAL PET 040987

	NT REQUESTED			1	
	Đ		LA	2	No
			LA	2	No
			LA	5	No No
			LA	6	-
			LA	8	-
			LA	9	
	Ì		LA	10	No
			LA	11B 12	No No - - - - - - - - - - - - - - - -
			LA		-
			LA	17	-
			LA	19	-
	1		LA	20	-
	1		LA	21	-
		PP	LA	26	-
		띄뒙	LA	29	-
		엄	LA	32	
	1	1 T T T	LA	33	-
		988 986	LA LA	34	-
	Q		∕ _LA	35	_
CA1069735	CA1069735				

Table	F – 5
Description of Contamination	Associated With Well Site Pits

1 - C - C	essed	Pit	and the second se	timated [Dimensi	ons	Berm	Oil	Siphon	Seepage	Discharge	
S	ite 🤞	Status		Thicknes	si (m)	Freeboard	Present	Condition	Found	Found	to Stream	Comments
			(m2)	Oil	Water	(m)	Yes/No	Fluid/Tar	Yes/No	Yes/No	Yes/No	
	Cove	red Pit	Yes	Oily wa	istes are	present in th	ne pit.	No	Oily wa	stes were no	ot identified.	
			Yea	Contan	ninants h	ave migrate	d beyond	-	Evidenc	ce of a pit w	as not found	on the site.
				the co	nfines of	the pit.		NA	Not Av	ailable		
LA	1	_										
LA	2	No	1,500	0	0		No		No	No	No	Area revegetated
LA	2	No	150	0	1.5		No		No	No	No	Dense vegetation around pit
LA	5	-										
LA	6	-										,
LA	8	-										
LA	9		•									
LA	10	No	NA	0	0		No		No	No	No	Area revegetated
LA	11B	No] NA	0	0		No		No	No	No	Area revegetated
LA	12	-										
LA	17	-										
LA	19	-										
LA	20	-										
LA	21	-										
	26	-										
LA	29	-										
LA	32											
LA	33	-										
	34	-										
, LA	35	-										
∕ . LA	35	-										

	1.1.1.1	ssed	Pit		timated [*******	Berm	01	Siphon	Seepage	Discharge	
	Si	(8)	Status	Area (m2)	Thicknes Oil	is (m) Water	Freeboard (m)	Present Yes/No	Condition Fluid/Tar	Found Yes/No	Found Yes/No	to Stream Yes/No	Comments
د				(
		Cover	red Pit	Yes	Oily wa	istes are	present in th	e pit.	No	Oily wa	stes were no	ot identified.	
				760	Contan	ninants h	nave migrate	d beyond	-	Evidenc	ce of a pit wa	as not found	on the site.
					the co	nfines of	the pit.		NA	Not Av	ailable -		
D	н	2	_										
	н	5	_										
	NT	1	No	400	0	0		No		No	No	No	Recently covered.
	NT	1	No	400	0	0		No		No	No	No	Recently covered.
	AT .	2	Yes	60	0	0.5	1.5	Yes		No	No	No	Not in use
	AT	3	No	NA	0	0		No		No	No	No	Identified by colonizer.
G	3U	1		3,200	0.01	2	1	Yes	Fluid		No		Dense vegetation around p
G	3U	1	a co	2	0.5	1.5	0.3	No	Fluid	No			Filters in pit.
G	U	3	с. Хс. ч	484	0.3	1.2	0.75	Yes	Fluid		No		Recent oil input
G	U	5		3,200	0	0		No		No		217	Recently covered.
G	iU	8	-									_	
A	G	AG3	Yes	120	0.05	1.5	0.25	Yes	Tar	No		No	Dense vegetation around p
A	G	AG6		600	0	0		No	Tar	No	: <u></u>		Recently covered.
A	G	AG6		600	0	0		No	Tar	No	К.Э.Э.		Recently covered.
2. A	G	AG8	to detect	225	0.03	1.5	0.1	Yes	Tar	No		No	Pit has overflowed.
A	G	AG9		1,600	0.01	2	0.5	Yes	Fiuid	No		No	Dense vegetation around p
	G	AG10		2,700	0.01	2	0.1	No	Tar	No	Yes	No	Dense vegetation around p
A	G	AG10	Yes	50	0.05	2.5	0.25	No	Tar	No	No	No	Pipe from flowline to pit.
SS	SF	B57		2,500	0.05	2	0.1	No	Fluid	No	C C	NA	Dense vegetation around pi
S	SF	B59	S(S)	225	0.15	1.5	0.2	No	Fluid	No		No	Pit has overflowed.

 Table F – 5

 Description of Contamination Associated With Well Site Pits

ļ

ļ

1 - A - A - A - A - A - A - A - A - A -	ssed	Pit	Es		Dimensi	······	Berm	Oil	Siphon	Seepage	Discharge	
Si	te	Status	Area	Thickne	ss (m)	Freeboard	Present	Condition	Found	Found	to Stream	Comments
			(m2)	Oil	Water	(m)	Yes/No	Fluid/Tar	Yes/No	Yes/No	Yes/No	
		ed Pit	Yes	Oily w	actae ard	present in th	a nit	No	Oikuwa	stes were no	at identified	
	J 0000		Yes	-		ave migrate	-	-	-		as not found	on the site
		i	2002 A.A. 499		nines of	•	Bobyond	NA	Not Av	•		OT the site.
					A 111/183 UI				1406 AV			
SSF	61	Yog	2,550	0.15	1.5	0.2	No	Fluid	No	YON	No	Dense vegetation around
SSF	61	Yes	64	0.1	0	1	No	Tar	No	No	* No	Dense vegetation around
SSF	B63	200	324	0.01	¹ 1	0.3	Yes	Fluid	No	200 Yon	No	Grass around pit.
SSF	B63		3,150	0.02	2	0.5	Yes	Fluid	No	No		Grass around pit.
SSF	B64		3,300	0	0		No	Tar	No			Oil in stream = 1800 m2.
SSF	A65	_									,	
SSF	B66	SG &	2,600	0.03	2	2	Yes	Fluid				Grass around pit.
SSF	A67	Yes	500	0.02	1.5	0.3	Yes	Fluid	No	No	No	Grass around pit.
SSF	A67	No	100	0	0	1.5	No		No	No	No	Pit is empty.
SSF	68	<u>~</u> ?~;	NA	0	0		No		No	\mathcal{L}	e vysel	Area reforested.
SSF	69	No	800	0	1.5		No		No	No	No	No visible contamination.
SSF	69	No	96	0	1.5		No		No	No	No	No visible contamination.
SSF	71	Yes	2,590	0.02	1.5	0.5	No	Fluid	No	No	No	Oil on 30% of surface.
SSF	71	No	2,590	0	2	0.5	No		No	No	No	Unknown use.
SSF	71	No	2,590	0	2	0.5	No		No	No	No	Unknown use.
SSF	WIW2	No	216	0	2	0.1	No		No	No	No	Unknow use.
SSF	WIW4	No	2,400	0	2	0.1	No		No	No	No	Unknow use.
SSF	WIW7	No	170	0	2	0.1	No		No	No	No	Unknow use.
SSF SSF SSF SSF SSF	A1		600	0	0		No		No	NGS N	No	Location not confirmed.
SSF	A7	N/CS	225	0.05	1	0.1	No	Tar	No	ice ice a	No	Adjacent oil seep area.

Table F - 5 Description of Contamination Associated With Well Site Pits

CA1069737 I

.

and the state 1. 1.

a. 5

an air

- - -----

:

Ass	essed	Pit	Es	timated (Dimensi	ions	Berm	Oil	Siphon	Seepage	Discharge	
S	Site	Status	Area	Thicknes	ss (m)	Freeboard	Present	Condition	Found	Found	to Stream	Comments
			(m2)	Oil	Water	(m)	Yes/No	Fluid/Tar	Yes/No	Yes/No	Yes/No	
	7.000	red Pit		Oihuur		mogent in th		No	Oihuwa		t identified	
			Yes Yes	; -		present in th	•	No	•	stes were no		an the site
		8		•	nines of	ave migrate	u oayonu	– NA	Not Av	•	as not found	on the site.
SSF	A 9	_										
SSF	A10	_										
SSF	A13		300	0.15	2	0.5	No	Fluid				Dense vegetation around p
SSF	A13	No	400	0	- 1.5	••••	No		No	No	No	Unknown use.
SSF	B15		1,125	0.02	1	0.2	No	Fluid	No	NA	N. Stars	Possible oil filled depressio
SSF	816		1,000	0.02	1	0.2	No	Fluid	No	NA		Downslope discharge.
SSF	A20	Yes	300	0.04	2	t	No	Fluid	No	No	No	Oily vegetation in pit.
SSF	A22B	Yes	120	0.05	NA	0.1	No	Tar	No	No	No	Oily vegetation in pit.
SSF	A24	NY. ST	150	0.05	1	0.1	No	Tar	No		No	Oily vegetation in pit.
SSF	A26	-										
SSF	A30	Yes	450	0.5	NA	NA	No	Tar	No	No	No	Oily vegetation in pit.
SSF	A30		480	0.5	NA	0.1	NA	Tar	No	: AS	10. ¹	Oily vegetation in pit.
SSF	A30	36	225	0.5	NA	0.1	NA	Tar	No	. «Y 3 %		Oily vegetation in pit.
SSF	B 31	Yes	595	0.5	0.1	0.5	No	Tar	No	No	No	Dense vegetation around p
SSF	A33	Yes	1,200	0.25	NA	1	No	īar	No	No	No	Vegetation growing on oil.
SSF	A34	-									l	
SSF	B 36	36.35	NA	0	0		No		No		No	Area revegetated.
CONFIDENTIAL	A38		300	0.15	NA	0	No	Tar	No		Ser YGOYAS	Oil seeping into wetland.
A SSF	A43 A43		1,750	0	0		No No		No No			Area covered with grasses. Pit filled with wood chips.

ſ	Asse	essed	Pit	Es	timated I	Dimensi	ons	Berm	Oil	Siphon	Seepage	Discharge	
	S	ite	Status	Area	Thicknes	ss (m)	Freeboard	Present	Condition	Found	Found	to Stream	Comments
Ĺ			. <u></u>	(m2)	OU	Water	(m)	Yes/No	Fluid/Tar	Yes/No	Yes/No	Yes/Na	
 _													
L			ed Pit	Yes	Oily wa	astes are	present in th	ne pit.	No	Oily wa	stes were no	ot identified.	
]	YC 1	Contar	ninants h	ave migrate	d beyond	-	Eviden	ce of a pit wa	as not found	on the site.
-					the co	nfines of	the pit.		NA	Not Av	ailable		
												3	
	SSF	6B	<u> </u>	64	0	0		No		No		No	Oil seep in plantation.
	SSF	A45	No	4	0	0		No		No	No	No	Contains domestic waste.
	SSF	A45B	Yes	1,500	0.02	1.5	0.1	No	Fluid	No	No	No	Grass around pit. Oil overflow.
	SSF	A45B	No	120	0	0		No		No	No	No	Pit is empty – grass inside.
	SSF	46	Yes	324	0.05	0	4	Yes	Fluid	No	No	No	Dense vegetation around pit.
	SSF	B49	Yes	880	0.05	1.5	1	Yes	Tar	No	No	No	Pasture on two sides.
	SSF	B49	૾ૡઌૢઌૡ	100	0.5	0.5	1	Yes	Fluid	No	*(?:	No	Dense vegetation around pit.
	SSF	A50	-										
	SSF	B51	Yes	64	0.1	2	0.3	No	Fluid	No	No	No	Grass around pit.
	SSF	B 52											
	SSF	B55	·??* •	1,200	0	· 0		No	Fluid	No	7755	No	Oily soil mound adjacent pit.
	SA	WW1	_										
	SA	WIW2	Yes	625	0.5	0.5	0.5	No	Tar	No	No	No	Tar overgrown with vegetation.
	SA	WIW2	Yes	750	0.5	0.5	0.5	No	Tar	No	No	No	Tar overgrown with vegetation.
-\	SA	WIW3	No	800	0	2	NA	NA		No	No	No	Aquatic vegetation in pit.
30	SA	WIW4	Yes	1,200	0.05	1.5	NA	No	Tar	No	No	No	Dense vegetation around pit.
NI I	SA	WIW5		NA	NA	0				No	70	No	Grass over former pit area.
28	SA	WIW6	Yes	3,150	0.05	1	0.5	No	Tar	No	No	No	
IDENTIAL	SA	WIW6	Yes	12	0.03	2	0.5	No	Fluid	No	No	No	Dense vegetation around pit.
95 A	6A	1											
•	- • •												

Table F – 5Description of Contamination Associated With Well Site Pits

CA1069739

	ssed	Pit	Es	imated Di	mensic	ons	Berm	Oil	Siphon	Seepage	Discharge	
S	te	Status	Area	Thickness	(m)	Freeboard	Present	Condition	Found	Found	to Stream	Comments
			(m2)	OII	Water	(m)	Yes/No	Fluid/Tar	Yes/No	Yes/No	Yes/No	
· · · · · · · · · · · · · · · · · · ·	Cove	red Pit	Yes	Oily was	ies are p	present in th	e pit.	No	Oily wa	stes were no	ot identified.	
			23 <u>6</u> 3	Contami	nants ha	ave migrated	i beyond	-	Evidenc	ce of a plt wa	as not found	on the site.
				the conf		-	•	NA	Not Av	•		
										· · · · · · · · · · · · · · · · · · ·		
SA	2	No	400	0	0				No	No	No	
SA	8		900				NA		No	(C)	No	Vegetation over former pit are
SA	9	_										
SA	11	Yes	64	1	1	1	No	Fluid	No	No	No	Dense vegetation around pit.
SA	12	SC3	400				NA		No		No	Vegetation over former pit are
SA	13	No	NA						No	No	No	Vegetation over former pit are
SA	13	No	NA						No	No	No	Vegetation over former pit are
SA	16		100				NA		No		No	Grass over former pit area.
SA	18		NA				NA		No	ni Literatura	No	Vegetation around former pit.
SA	19	See.	375	0.05	1	NA	No	Tar	No			Possible discharge area.
SA	20		6	0.01	1	0	No	Fluid	No		S YON	Dense vegetation around pit.
SA	21	Yes	100	0.05	2	1	Yes	Tar	No	No	No	Dense vegetation around pit.
SA	21	Yes	100	0.05	0	0.5	No	Fluid	No		No	Vegetation inside pit area.
SA	25		100								No	Pit undergoing burial.
SA	27	-										
SA	28	-										
SA	32	Yes	2,500	0.1	2	1	Yes	Fluid	No	No	No	Dense vegetation around pit.
SA SA SA	32	No	500	0	2				No	No	No	Aquatic vegetation in pit.
SA	33	Yes	150	0.5	1.5	1	Yes	Fluid	No	No	No	Dense vegetation around pit.
SA	33	SCS .	16	0.02	2	0.5	No	Fluid	No		(* . .	Vegetation around pit area.

Table F - 5 Description of Contamination Associated With Well Site Pits

.

...

CA1069740

					D	escriptio	on of Cont		e F – 5 n Associat	ed With	Well Site I	Pite	
		,											T
A	SSes	N. 141	Pit	· · · · · · · · · · · · · · · · · · ·	imated [Berm	Oil	Siphon	Seepage	Discharge	
	Site		Status	Area (m2)	Thicknes Oil	water	Freeboard (m)	Present Yes/No	Condition Fluid/Tar	Found Yes/No	Found Yes/No	to Stream Yes/No	Comments
L				(1112)		TACA	(/			. 163/140		183/10	
		Cover	red Pit	Yes	Oily wa	istes are	present in th	e pit.	No	Oily wa	istes were no	ot identified.	
				· · · · · ·	Contan	ninants h	ave migrate	d beyond	-	Eviden	ce of a pit wa	as not found	on the site.
					the co	nfines of	the pit.		NA	Not Av	ailable		
S	A	34	-										
S	A	35	-										
S	A	36	Yes	NA	NA	NA	NA	NA	Fluid	No	No	No	Pit not accessible - tall gras
S	A	43		NA				NA		No	an Yeo in	No	Former pit area is vegetated.
S	A	44	Yes	750	NA	NA	0.5	Yes	Tar	No	No	No	Dense vegetation around pit.
S	A	46	Yes	144	0.05	0	2	Yes	Tar	No	No	No	Pit filled with cut trees.
S	A	46	No	NA						No	No	No	Former pit area vegetated.
S	A	54	Yes	150	0.05	0	1	Yes	Tar	No	No	No	Dense vegetation around pit.
S	A	55	Yes	25	0.05	0	2	No	Tar	No	No	No	Dense vegetation around pit.
S	A	56	-									-	
S	A	58	Yes	96	0.05	• 1	1	No	Tar	No	~ Yoo _	No	Dead vegetation in pit.
S	A	58	Yes	700	0.05	1.5	· 1	Yes	Tar	No	No	No	Plantation adjacent pit.
	A	59	Yes	300	0.05	1	0.3	No	Tar	¥053	- SYCE	No	Grass growing into pit.
S	A	60		750	0.02	1	0.1	No	Fluid	No	2. C	Yes	Grass around pit.
S	A	72	Yes	1,500	0.02	2	1	No	Tar	No	No	No	Vegetation on oil layer.
S	A	72	No	100	0	0	2	No		No	No	No	Trees growing in pit.
S S S S	A	73	_								•		
י ציי	A	74	Yes	750	0.1	2	1	Yes	Fluid	200	760	No	Tall grass adjacent pit.
- S		• •		-		1	1	No	Tar	No	No	, No	Dead vegetation in pit.
	A	75	Yes	1,500	0.05								

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069741

Table F - 5 Description of Contamination Associated With Well Site Pits

	essed	Pit		timated I		A	Berm	Oil	Siphon	Seepage	Discharge	
Ş	Site	Status	Area (m2)	Thickne: Oil	Water	Freeboard (m)	Present Yes/No	Condition Fluid/Tar	Found Yes/No	Found Yes/No	to Stream Yes/No	_ Comments
			······		فاليحمن ببرينية							
	Cove	red Pit	Yes	Oily wa	istes are	present in th	e pit.	No	Oily wa	istes were no	ot identified.	
			YCS -	Contar	ninants h	ave migrate	d beyond	-	Eviden	ce of a pit wa	as not found	on the site.
				the co	nfines of	the pit.		NA	Not Av	ailable ·		
	- ··											
SA	77	Yes	300	0.1	1.5	0.5	Yes	Fluid	No	No	No	"Grass around pit.
SA	78	28 <u>0</u> 3	600	0.05	1	0.1	No	Fluid	No		NC)	Grass around pit.
SA	81	Yes	4,800	0.15	1.5	0.5	No	Fluid	No	No	No	Dense vegetation around pit
SA	84	Yes	2,100	0.01	2	0.5	No	Fluid	No	No	No	Plantation adjacent pit.
SA	84	No	300	0	0	2	No		No	No	No	Pit is empty.
SA	85	Yes	100	Film	1.5	0.1	No	Fluid	No	No	No	Grass around pit.
SA	86	Yes	600	0.02	1	1	Yes	Fluid	No	No	No	Dense vegetation around pit
SA	86	No	400	0	1.5	1	No		No	No	No	Dense vegetation around pit
SA	91	Yes	450	0.01	3	3	No	Fluid	No	No	No	Dense vegetation around pit
SA	91	No	3,200	0	1.5	0.5	No		No	No	No	Grass/bamboo adjacent pit.
SA	93	Yes	450		0.1	0.1	No	Tar	No		No	Grass growing over former p
SA	94	Yes	3,600	0.05	2	0.1	No	Fluid	No	No	No	Dense vegetation around pit
SA	94	Yes	384	0.05	1	1	Yes	Fluid	No	No	No	Grass around pit.
SA	95	NGE .	1,900	0.15	NA	0.1	No	Tar	No		No	Dead vegetation in pit.
SA	95	- C · ·	400	NA	NA	0.1	Yes	Tar	No		No	Pit contains wood cuttings.
SSA	95	No	400	0			Nō		No	No	No	Cleared area around pit.
≍́sa	97	S'G S	2,800	Film	0.2			Fluid	No		SC?	Former pit in wetland area.
	100	Yes	800						No		No	Grass growing over former p
	103		1,600	0.2	2	0.5	Yes	Fluid	Ч.,	C_{i}	\sim (C)	Tall grass adjacent pit.
	103	No	100	0	2	1	Yes		No	No	No	Plantation adjacent pit.

ſ	Asse	essed	Pit	Est	timated [Dimensi	ons	Berm	Oil	Siphon	Seepage	Discharge	
		ite	Status		Thicknes	••••••	Freeboard	Present	Condition	Found	Found	to Stream	Comments
				(m2)	Oil	Water	(m)	Yes/No	Fluid/Tar	Yes/No	Yes/No	Yes/No	
r	·····												
L		Cove	red Pit	Yes	Oily wa	astes are	present in th	ne pit.	No	Oily wa	stes were no	ot identified.	
				Yee	Contar	ninants h	nave migrate	d beyond	-	Eviden	ce of a pit w	as not found	on the site.
-	<u>_</u> _				the co	nfines of	the pit.		NA	Not Av	ailable		······
	SA	104	Yes	1,125	0.1	2	0.5	No	Fluid	No	No	No	Tall grass adjacent pit.
	SA	107	-YC3	1,200	0.05	1	0.1	No	Fluid	No		No	Cut trees dumped into pit.
	SA	109	-203	1,250	0.1	1.5	1	Yes	Fluid	No	277 J	No	Grass around pit.
	SA	109	No	225	0	1	1	No		No	No	No	Dense vegetation around pit.
	SA	110	Yes	1,500	0.05	1.5	1	Yes	Fluid	No	No	No	Vegetation around pit.
	SA	111	Yes	900	0.1	1.5	0.5	Yes	Fluid	YCE	No	No	Grass around pit.
	SA	113	Yes	1,500	0.05	0.1	0.1	No		No	No	No	Grass and trees growing in pit.
	CU	2		1,150				No		No	1 63	e e s	Sparse grass over former pit.
	YB	2		125	0.01	2.5	1.5	No	Fluid			<u>с</u> су.	Tall grass adjacent pit.
	YU	4	SC:	225	0.1	2	1	Yes	Fluid		200 S	a de la compañía de l	Tall grass adjacent pit.
	YU	6	No	400	0	• 0		No		No	No	No	Garbage in pit.
	YU	5	Yes	90	0.005	1.5	1	Yes	Fluid	No	No	No	Dense vegetation adjacent pit.
C	YU	5	Yes	120	0.05	2	1	Yes	Tar	203 - E	No	No	Plantation adjacent pit.
12	YU	5	Yes	60	0.01	1	1	No	Fluid	No	No	No	Dense vegetation adjacent pit.
CONFIDENTI/	YU	12	n an	144	0.05	2.5	0.5	Yes	Fluid	(A)		No	Dense vegetation adjacent pit.
E E	YUS	1	i de la composición d	400						No	Server and the server of the s	No	No vegetation adjacent pit.
	AU	1	C	100						No	$\langle c \rangle$	No	Grass on former pit area.
PA L	AU	4	<u>3C2</u>	400							100	No	Grass on former pit area.
	AU	6	49CD	100						No		No	Grass on former pit area.
	AU	7	No	1,250						No	No	No	Located in low wetland area.

Table F = 5Description of Contamination Associated With Well Site Pits

CA1069743

.

Table	F – 5
Description of Contamination	Associated With Well Site Pits

	Asse	essed	Pit	Es	timated	Dimensi	ons	Berm	Oil	Siphon	Seepage	Discharge	
	S	ite	Status	Area	Thickne	ss (m)	Freeboard	Present	Condition	Found	Found	to Stream	Comments
L				(m2)	Oil	Water	(m)	Yes/No	Fluid/Tar	Yes/No	Yes/No	Yes/No	
			red Pit	Yes	Oily w	astes are	present in th	e pit.	No	Oily wa	stes were no	t identified.	
_		-			Conta	minants h	ave migrate	d beyond	-	Evidenc	e of a pit wa	s not found	on the site.
					the co	onfines of	the pit.		NA	Not Av	ailable .		
	AU	9	No	64						No	No	No	Grass on former pit area.
	AU	11		100	0.01	2	0.3	Yes	Fluid	Store .			Tall grass adjacent pit.
	AU	12	<u></u>	100						No		No	Grass on former pit area.
	AU	15	C.	150						No		No	Grass on former pit area.
	AU	16	C.S.	150						No	a stationer and the second	No	Grass on former pit area.
	AU	17	2000 1997	64	0.05	1.5	1	Yes	Fluid				Grass adjacent pit .
	AU	17	Yes	1	0.5	0	0.1	No	Fluid	No	No	No	Temporary pit below flowline.
	AU	18											
	AU	19B		150						No		No	No vegetation over former pit.
	AU	21	N D	100						No		No	Sparse grass on former pit an
	AU	24		150						No		No	Grass on lormer pit area.
	AU	24	No	1,200	0	2	1	Yes		No	No	No	Unknown usage.
	AUS	1	C.	(a)									
``	AUS	1	No	(a)									
CONE.	AUS	1	Yes	(a)									
Z	RM	1	Yes	225	0.01	1.5	0.5	Yes	Fluid	No	No	No	Organic scum on water.
	CN	1	NCO.	120								No	Orchard adjacent former pit.
THENTI	CN	2	YCE	450						No	(6)	No	Former pit adjacent plantation
Ā	CN	3	No	• 150	0	2	1	Yes	2	No	No	No	Grass adjacent pit.
	CN	8	No	80	0	0	2	Yes		No	No	No	Grass growing in pit.

CA1069744

				D	escripti	on of Coni	taminatio	n Associat	ed With	Well Site	Pits	
Assesse	d Pit	1	Est	imated	Dimensi	ons	Berm	Oil	Siphon	Seepage	Discharge	
Site	Stat	us [Area	Thickne	ss (m)	Freeboard	Present	Condition	Found	Found	to Stream	Comments
к. 1 Т			(m2)	. Oil	Water	(m)	Yes/No	Fluid/Tar	Yes/No	Yes/No	Yes/No	
Co	vered Pit	2000	Yes Yes	-		present in th ave migrated	•	No –	-	istes were no	ot identified. as not found	on the site.
				the co	onfines of	the pit.		NA	Not Av	ailable		
CN 11 CN 12			300	0.3	2	0.5	Yes	Fluid	No	No	No	Dense vegetation on one side.
DU 1		00000	(a)	0.3	2	0.5	182	FILIO	NU	NO	NU	Dalise vegetation of one side.
Total Ye (All Condition Total No (All Condition Total - Total Record	ons) ons) ds 2	26 39 37 02 50		Dpen or o	closed pit		dence of oi a not found.	t accumulatio		ence of oil m	igrating bey	ond the confines of the pit.
Total		43						nce that oil h	as migrate	d beyond th	e confines o	f the pit.
Total		33	(Dil waste	present i	n a covered (pitand/oro	il waste pres	ent beyond	d the confine	es of a former	pit.
	0	13	I	No evider	nce of oil	within the co	nfines of a	covered pit o	r beyond t	he confines	of a covered	рй.
Total N	0	26		No evider	nce of oil	in an open p	it or beyon	d the confine	s of an ope	on pit.		
	e reliable TIAL					nited amount thout additio		la.				

Table F – 5 scription of Contamination Associated With Well Site Pi

-

:

81 3

.**k**.:

. 📲

м

CA1069745 CA1069745

ssessed	Evidence of Spill	Description of Spill	Spill	Vegetation Regeneration	Comments
lowline	Yes / No		Location (a)	Within Corridor	
X 1	No			Yee	
6	No			Yee	
8	No			Yes	
17	Yes	Line repair (b) spill affecting soil and water	East of North Station access road.	Yes	Six flowlines cross the stream at this location.
29	No		•	Yes	
33	Yes	Line repair spill affecting soil and water.	Near well site LA10	Yes	Two flowlines in the corridor at spill location.
34	No			Yes	
5	No			Yes	Flowline has no supports over some of route.
1	No			Yes	Flowline has no supports over most of route.
3	No			Yes	Flowline has no supports over some of route.
5 AG8	No No			Exposed soil.	Flowline has no supports over most of route. Rent clearing along portion of route.
AGIO	No			Yee	
F 857	No			Yes	
F 61	No			Yes	ı
F 864	No			Yes	Stream sedimentation from well site construction
F A65	No			No	Well site located at Central Station.
F WIW4	No			Yes	
F A7	No			Yes	
F A13	No			Yee	
F B15	No			Yee	
F 816	Yes	Line repair spill affecting soil. (50 m2)	200 m south of production station.	Yee	Eleven flowlines in the corridor at spill location.
F A24	No			Yes	Flowline removed. Supports still in place.
F A30	Yee	Line repair resulted in small spill.	50 metres east of A34 access road.		
F A34	Yes	Line removal resulted in small spill.	Along access road to well site.	Yes	Flowline has been removed.
F A38				Yes	•
F 46	No TA			Yes	Up to twelve flowlines in corridor,
F A50				Yee	Flowline removed. Supports still in place.
F 851	No PE			Yes	Up to nine flowines in corridor.
WIW5	NA OGU			Yee	No road access to corridor.
11	No OH			Yee	Up to nine flowlines in corridor.
13	<u> </u>	Open valve resulted in 4 m2 spill.	At junction to main road.	Yee	Up to nine flowlines in corridor.
20	Yes	Open valve resulted in 6 m2 spill.	At junction to main road.	Yes	Up to nine flowlines in corridor.
25	No				Up to twelve flowlines in corridor.
33	NA			• • •	No road access to corridor.
35	No				Portions of the flowline are underground. Recent repair to flowline.
46_	Yea	2 m2 pit below flowline contains oil.			Un to five flowlines in costides

 Table F – 6

 Description of Contamination Associated With Assessed Flowlines

ø •

	ssed	Evidence of Spill	Description of Spill	Spill	Vegetation Regeneration	Comments
Flo	vline	Yes / No		Location (a)	Within Corridor	
SA	58	NA			Yes	No road access to corridor.
SA	59	No			Yes	Up to twelve flowlines in corridor.
SA	73	No			No	Well site located at production station.
SA	74	No			Yes	
SA	81	No			Yes	Poor pipeline support at stream crossing.
SA	84	Yes	Repair resulted in 30 m2 spill below line.	At access road junction.	Yes	Two pipes joined at spill location.
SA	91	No			Yes	No road access to much of corridor.
SA	95	No			Yes	Flowline disconnected from wellhead.
SA	100	No			Yee	Up to five flowlines in corridor.
SA	107	No			Yes	Up to twelve flowlines in corridor.
SA	110	No			Yes	-
SA	113	No			Yes	Flowline removed.
CU	2	No		•	Yes	
YB	2	No			Yes	
YU	4	No			Yes	Two flowlines in corridor.
YU	12	No			Yes	Up to three flowlines in corridor.
YUS	1	No			Yes	Two flowlines in corridor.
AU	4	Yes	Spill has flowed downslope.	At access road to well site AU5.	Yes	
AU	6	No			Yee	Two flowlines in corridor.
AU	12	No			No	Up to seven flowlines in corridor.
AU	16	No			Yes	Two flowlines in corridor.
AU	18	No			Yee	Two flowlines in corridor.
AUS	1	Yes	Spill affects land and water (60 m2).	At access road to well site AU15.		
RM	1	No			Yee	Flowline removed.
CN	3	No			Yes	
CN	8	No			Yes	Flowline is underground.
CN	12	No			Yes	Flowline removed.
DU	1	No			No	Wellsite is located at production station.

Table F - 6

Total Spills

11

(a) The flowline was assessed from the well site boundary to the production station boundary.

2.

CONFIDENTIAL PET 041000 (b) Observed pipeline repair method involves several steps. 1.

A pit is dug below the section of pipe requiring repair.

The pipe is cut and the contents released to the plt.

A vacuum truck removes and disposes the fluid from the pit. 3.

4. The damaged section of pipe is removed.

5. A new section of pipe is welded in place.

CA1069747

Station	Spill Source	Spill	Estimated Di	mensions (c)	Description of On-Site Spill	Description of Off-Site Spill
	(a)	Type (b)	Area (m2)	Depth		
ago Agrio	Separator	PF	NA	NA	Surficial staining adjacent equipment area.	None
entral	Wash Tank	PF	NA	0.3	Small spills confined inside bermed area.	None
	Surge Tank	PF	NA	0.3	Small spills confined inside bermed area.	None
	Chemical Tank		Small	NA	Small spills confined to area below tanks.	None
	Fuel Tank	Diesei	100	Variabie	Splits appear to be confined inside bermed areas.	None
		Gasoline	100	Variable	Spills appear to be confined inside bermed areas.	None
		Jet Fuel	100	Variable	Spills appear to be confined inside bermed areas.	None
	Pump/Compressor	PF	250	NA	Sufficial staining adjacent equipment area.	None
	Lined Sump	PF,UO	Large	NA	Periodic sump overflow and drain to ditches,	Ditch drains to separation pit.
	Vehicle Maintenance	UO	Large	NA	Used all and wash water discharge to ditch.	Ditch drains to low area off-site.
	Flare Stack	PF	400	NA	Sufficial spills at the base of three flare stacks.	Spills enter separation pit.
	Pit -	PF,UO	200	NA	Overflow discharges to channel.	Overflow collects in low off-site area.
		PF	Very Large	NA		Widespread contamination of land below discharge
ago Agrio	Separator	PF	100	0.1	Numerous small spills covered with sand.	None
lorth	Surge Tank	PF	20	0.3	Spills located below surface piping.	None
UT III	Wash Tank	PF	50	0.3		None
	Pump/Compressor	PF	100	0.3	Oil spill around equipment.	None
	Flare Stack	PF	20	0,1	Surficial stains at base of stacks.	None
	Pit	PF	VeryLarge		None	Contamination appears confined to the channel
						and banks of channel below the discharge pipe.
	Industrial Solid Waste				Incinerated on site.	None
	Domestic Solid Waste				Incinerated on site.	None
arahuacu	Well Site	Mud	3000	1	Large barren area with no vegetation growth.	Spill merged with produced water discharge.
	Surge Tank	PF	100	0.8	Oily sand throughout much of tank area.	None
	Separator	PF	_	-	Small spills are routinely covered with sand.	None
1	Pump/Compressor	UO	-	-	Small epille adjacert equipment.	None
1-1-2	Flare Line	PF	200	-	Spill below flare line enters drainage ditch.	Spill enters watland adjacent flare line.
μŽ	Flare Stack	PF	NA	-	Spills enter separation pit.	
	Pit	PF	Very Large	-	None	Wideepread contamination of land below discharge
CONFIDENTIAL PET 041001						

 Table F – 7

 Description of Contamination at Production Stations

i i

i.

Station	Spill Source	Spill	Estimated Dim	ensions (c)	Description of On-Site Spill	Description of Off-Site Spill
. :	(a)	Type (b)	Area (m2)	Depth		
Atacapi	Separator	PF	200	0.3	Small spills are routinely covered with sand.	None
	PR		Large		Contamination in channel on eroding slope.	Widespread contamination of land below discha
Guanta	Weeh Tank	PF	500	0.3	Spille around tanks and beyond berm.	Spilla ultimately merge at pit discharge area.
	Surge Tank	PF	500	0.3		
	Fuel Tank	Diesel	200	0.5	Spills around tanks and beyond berm.	None
	Pump/Compressor	UO	300	0.3	Numerous spills around pumps and sumps.	Sump discharge to ditch and ultimately merges
	Lined Sump				Associated with pump spills.	with pit discharge.
	FlareLine	PF			Fluids spill from line into ditch.	Spill merges with pit discharge.
	Fiere Stack	PF	50	0.1	Fluids flow to separation pit.	Pit discharge to off-site land and water.
	Pit	PF	Very Large	NA		Widespread contamination of land.
Aguarico	Separator Wash Tank	PF PF	20 NA	0.3 NA	Surficial spills throughout area. Surficial spills throughout bermed area.	Spills have entered off-site wetland via drain pi
	Surge Tank	PF	80	0.1	Surficial spills throughout bermsd area.	None
	Lined Sump	UO	200	0.2	Surficial spills on roadway.	Spills have entered off-site wetland.
	Flere Stack N.	PF	50		Surficiel spills under stack.	
	Flare Stack S.	PF	_NA	NA	Spills in former pit area.	Pit below flare is destroyed. Spills spread out.
					Dë bottom je elejned	Pit is breached or destroyed. Spills spread out.
		PF	NA	NA	Pit bottom is stained.	
Shushufindi Central	Pit Separator	PF	NA NA	NA	Surface oil stains around equipment.	Waste discharge to pipe and ditch which drains off-site location.
	·····	PF		NA	Surface oll stains around equipment. Wash water drains into central drain system.	Waste discharge to pipe and ditch which drains off—site location. Drain system discharges off~site near runway.
	Separator	PF UO PF	NA	NA	Surface of stains around equipment. Wash water drains into central drain system. Oil saturated the gravel and sand layer.	Waate discharge to pipe and ditch which drains off—site location. Drain system discharges off~site near runway. Drainage ditch adjacent berm contains oll.
Central	Separator Vehicle Maintenance Wash Tank Surge Tank	PF	NA Lerge	NA NA 0.5 0.2	Surface oil stains around equipment. Wash water drains into central drain system. Oil saturated the gravel and sand layer. Surficial spills throughout bermed area.	Waste discharge to pipe and ditch which drains off—site location. Drain system discharges off~site near runway. Drainage ditch adjacent berm contains oil. Drainage ditch adjacent berm contains oil.
Central	Separator Vehicle Maintenance Wash Tank	PF UO PF	NA Lerge 200	NA NA 0.5	Surface oil stains around equipment. Wash water drains into central drain system. Oil saturated the gravel and sand layer. Surficial spills throughout bermed area, Groundwater appeared to be contaminated.	Waste discharge to pipe and ditch which drains off—site location. Drain system discharges off~site near runway. Drainage ditch adjacent berm contains oll.
Central	Separator Vehicle Maintenance Wash Tank Surge Tank Chemical Tank	PF UO PF PF Methanol	NA Lerge 200 100	NA 0.5 0.2 1	Surface oil stains around equipment. Wash water drains into central drain system. Oil saturated the gravel and sand layer. Surficial spills throughout bermed area, Groundwater appeared to be contaminated. The tank is near the Jet Fuel tank.	Waste discharge to pipe and ditch which drains off—site location. Drain system discharges off~site near runway. Drainage ditch adjacent berm conteins oil. Drainage ditch adjacent berm conteins oil. None.
Central	Separator Vehicle Maintenance Wash Tank Surge Tank Chemical Tank Fuel Tank	PF UO PF Methanol Diceci	NA Lerge 200 100 200	NA NA 0.5 0.2 1	Surface oil stains around equipment. Wash water drains into central drain system. Oil saturated the gravel and sand layer. Surficial spills throughout bermed area, Groundwater appeared to be contaminated. The tank is near the Jet Fuel tank. Groundwater appeared to be contaminated.	Waste discharge to pipe and ditch which drains off—site location. Drain system discharges off~site near runway. Drainage ditch adjacent berm conteins oil. Drainage ditch adjacent berm conteins oil. None.
Central	Separator Vehicle Maintenance Wash Tank Surge Tank Chemical Tank	PF UO PF Methanol Diesel Diesel	NA Lerge 200 100	NA 0.5 0.2 1	Surface oil stains around equipment. Wash water drains into central drain system. Oil saturated the gravel and sand layer. Surficial spills throughout bermed area, Groundwater appeared to be contaminated. The tank is near the Jet Fuel tank. Groundwater appeared to be contaminated. Groundwater appeared to be contaminated.	Waste discharge to pipe and ditch which drains to off—site location. Drain system discharges off~site near runway. Drainage ditch adjacent berm contains off. Drainage ditch adjacent berm contains off. None. None.
	Separator Vehicle Maintenance Wash Tank Surge Tank Chemical Tank Fuel Tank	PF UO PF Methanol Diceci	NA Lerge 200 100 200	NA NA 0.5 0.2 1	Surface oil stains around equipment. Wash water drains into central drain system. Oil saturated the gravel and sand layer. Surficial spills throughout bermed area, Groundwater appeared to be contaminated. The tank is near the Jet Fuel tank. Groundwater appeared to be contaminated.	Waste discharge to pipe and ditch which drains off—site location. Drain system discharges off~site near runway. Drainage ditch adjacent berm contains oil. Drainage ditch adjacent berm contains oil. None.

Table F - 7

CA1069749

ł

(a) Type (b) mp ck PF I Solid Waste us Waste b Waste	NA	Depth NA	against entry to area due to sporadic large bursts of flame and uncombusted gases. Small spills under each of the nine flare stacks.	and ditch. The oily outflow has covered a very large area off-site. Separator drainage is via some ditch. None Discharge of produced water to bog and stream. Abundant vegetation in bog area. None None
ck PF PF I Solid Waste us Waste o Waste			against entry to area due to eporadic large bursts of flame and uncombusted gases. Small spills under each of the nine flare stacks. Subsurface migration of contaminants adjecent at least one of the seven pits. Sorap metal, pipe and meltad flare stacks are located in the area adjecent the separation pits. About 50 drums located within concrete pit. The pit has been recently constructed.	area off-site. Separator drainage is via same ditch. None Discharge of produced water to bog and stream. Abundant vegetation in bog area. None
ck PF PF I Solid Waste us Waste o Waste			against entry to area due to eporadic large bursts of flame and uncombusted gases. Small spills under each of the nine flare stacks. Subsurface migration of contaminants adjecent at least one of the seven pits. Sorap metal, pipe and meltad flare stacks are located in the area adjecent the separation pits. About 50 drums located within concrete pit. The pit has been recently constructed.	Discharge of produced water to bog and stream. Abundant vegetation in bog area. None None
PF I Solid Waste us Waste o Waste			against entry to area due to eporadic large bursts of flame and uncombusted gases. Small spills under each of the nine flare stacks. Subsurface migration of contaminants adjecent at least one of the seven pits. Sorap metal, pipe and meltad flare stacks are located in the area adjecent the separation pits. About 50 drums located within concrete pit. The pit has been recently constructed.	Discharge of produced water to bog and stream. Abundant vegetation in bog area. None None
l Solid Waste us Waste b Waste	Large	2	Subsurface migration of contaminants adjecent at least one of the seven pits. Scrap metal, pipe and meltad flare stacks are located in the area adjacent the separation pits. About 50 drums located within concrete pit. The pit has been recently constructed.	Abundant vegetation in bog area. None None
us Waste D'Waste			located in the area adjacent the separation pite. About 50 drums located within concrete pit. The pit has been recently constructed.	None
o Waste			The pit has been recently constructed.	
			Recently constructed composting facility on site.	None
nk PF	500	0.3	Oily soil throughout bermed ares. The tank ruptured resulting in large spill. The spill entered an on site ditch.	The ditch flows to the separation pit which discharges waste to off-site river.
ink PF	100	0.3	Spill has entered drain and ditch outside berm.	As above,
	20	0.5	Spill appears confined to narrow path.	Spill has flowed down slope and off-site.
mpreseor UO	400	0.3	Used oil dumped into ditch adjacent pumps.	Used oil flows through culvert and into plantation.
•	50	0.3	Used oil has overflowed the adjacent sump.	Spill has flowed down slope and off—site. Spill merges with spill from methanol tank.
i PF	100	0.5	Oily waste has collected below the vent. Emmissions appear to impact adjacent banana trees.	Oily waste has migrated downslope and entered river. The spill merges with pit discharge.
ck PF	2500	NA	Surficial splits in area around vertical stacks. Horizontal flares discharge fluids to separation pit.	None. Builete of oil emmitted from fleree into wetland.
PF	Very Large	NA	Two pits have overflowed. Spill has moved down slope.	Discharge and overflows into wetland and river. Oil in soil, groundwater and surface water. Oil seeps on river bank. Contamination is widespread
	t Tank Methanol ompressor UO UO t PF ck PF	t Tank Methanol 20 pmpressor UO 400 UO 50 t PF 100 ck PF 2500	t Tank Methanol 20 0.5 pmpressor UO 400 0.3 UO 50 0.3 t PF 100 0.5 ck PF 2500 NA	I Tank Methanol 20 0.5 Spill appears confined to narrow path. ompressor UO 400 0.3 Used oil dumped into ditch adjacent pumps. UO 50 0.3 Used oil has overflowed the adjacent sump. I PF 100 0.5 Oily waste has collected below the vent. Emmissions appear to impact adjacent banana trees. ck PF 2500 NA Sufficial epilts in area around vertical stacks. Horizontal flares discharge fluide to separation pit.

Table F = 7Description of Contamination at Production Stations

CA1069750

CA1069750

L.

5

Station	Spill Source	Spill	Estimated Dim	ensions (c)	Description of On-Site Spill	Description of Off-Site Spill
·	(8)	Type (b)	Area (m2)	Depth		
Shushufindi	Pipeline	PF	100	0.5	Spill under produced water line near pits.	None
South	Separator	PF	NA	NA	Sufficial spills throughout process area.	None
	Wash Tank	PF	20	0.5	Spills appear confined to areas below valves.	None
	Surge Tank	PF	20	0.5	Spills appear confined to areas below valves.	None
	Chemical Tank					
	Pump/Compressor	PF	NA	NA	Surficial spills throughout process area.	Oil change to engines resulted in very large oil spill to sump and ditch which drains to nearby river. The spill has collected in the lowland adjacent the river.
	Lined Sump	PF, UO				Sumps drain to off-site ditch. Ditch drains to river.
	Flare Stack	PF			Small sufficial spills under 10 flare stacks.	None
	Pit	PF	Very Large	0.3	Spill outside of pit berm may result from overflow or dumping wastes into pit.	Contamination appears confined to the channel and banks of channel below the discharge pipe.
Shushufindi	Separator	PF		<u></u>	Sufficial spills covered with sand.	None
Southwest	Wesh Tank	PF	500	0.3	Oil on surface and in ditch inside bermed area.	Drain pipe spills to sump and then to off-site stream
					Sand over oily soil throughout bermed area.	Stream contains oil.
	Chemical Tank	NA	100	1	Soil has solvent odour adjacent tanks.	Sump and ditch discharge to off-site stream.
					Odour persists downslope to sump.	
	Fuel Tenk	Diesal	100	0.5	The spill has migrated out of the bermed area.	None
)	Pump/Compressor	UO	.300	NA	Surficial stains around equipment.	Sumps drain to ditch and to off-site stream.
	Lined Sump				Sumps are located on—site.	Sumps drain to ditch and to off-site stream.
ī	Flare Stack	PF	NA	NA	Horizontal flares knockout to separation pit.	Pit discharges to off-site channel.
					Surficial spills under vertical flares.	
	Pit	PF	2000	NA	None .	The pit is located near well site SSF23, it appears to have been used for tank bottoms. The discharge channel from the separation pit may have flowed
						through the pit some time ago. The pit contains a very large volume of oily sludge.

Table F - 7 Description of Contamination at Production Stations

Note: All process area wastes appear to discharge to a small off-site stream. The stream contains oily sediment. Oil floats on the surface of the water.

CA1069751

Water Inj.

Shushufindi Pump/Compressor

υo VeryLarge NA Surficial used of splits around pump area. Continuous discharge of used oil to stream adjacent the site. The stream contains oily sediment.

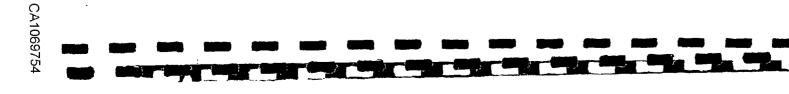
Spill Source	Spill	T Contraction of the second		Description of On-Site Spill	Description of Off-Site Spill
(8)	Type (D)	Area (m2)	Depin		
					Oil floats on the water. Contamination appears confined to the channel and banks of channel below the discharge point. Channel enters a river some distance away.
Vehicle Maintenance	UO	1000	NA	Used oil flows in ditch below flowlines. Wash water - runs freely around the maintenance area. Surficial anilis around againment	None.
Wash Tanks (2)	PF	Large	NA	Spills inside the bermed area. Oly fluid from gas line dripe out of bottom of Ene. Water discharged inside tank area periodically.	Spill entered drainage ditch adjacent tanks. Ditch flows to separation pit discharge area and off-site.
Surge Tank Chemical Storage	PF	Large Large	NA NA	Oily soil around entire tank. Ditch contains free oil. Numerous filled drums on pipe racks. A large number of spills have occurred throughout compound Several of the drums leak. Overturned drums and free oil on surface in several areas.	Oily waste le discharged via ditch to plantation area. Bananae and com adjacent compound appear norma l.
Fuel Tank	Diesei Diesei	500 1500	1 1	Fuel spills inside and outside the bermed area. Fuel spills inside and outside the bermed area.	None. Spills enter ditch adjacent plantation via drain.
Pump/Compressor	UO	NA	NA	Used oil spills around compressor facility. Waste is pumped to the wash tank.	None.
Flare Line					
Flare Stack	PF	1500	NA	Spills at base of three flare stacks.	None.
Ph	PF	Very Lange	NA	Waste discharge to onsite ditch, Waste appears confined to ditch, Evidence of migration of oil	Wideepreed contamination of soil and water at discharge point. Flow enters plantation area.
	(8) Vehicle Maintenance Separator Wash Tanks (2) Surge Tank Chemical Storage Fuel Tank Pump/Compressor Flare Line Flare Stack	(a) Type (b) Vehicle Maintenance UO Separator Wash Tanks (2) PF Surge Tank PF Chemical Storage Fuel Tank Diesel Pump/Compressor UO Flare Line Flare Stack PF	(a)Type (b)Area (m2)Vehicle MaintenanceUO1000SeparatorWash Tanke (2)PFLargeSurge TankPFLargeLargeChemical StorageLargeLargeFuel TankDiesel500Diesel1500Pump/CompressorPlare LineFiare StackPFFlare StackPF1500	(a)Type (b)Area (m2)DepthVehicle MaintenanceUO1000NASeparatorWash Tanke (2)PFLargeNASurge TankPFLargeNAChemical StorageLargeNAFuel TankDiesel5001Diesel15001Pump/CompressorUONAFlare LineFiare StackPF1500Flare StackPF1500NA	(a) Type (b) Area (m2) Depth Vehicle Maintenance UO 1000 NA Used oil flows in ditch below flowlines. Wash water - runs freely around the maintenance area. Separator Separator Surficial epille around equipment. Wash Tanks (2) PF Large NA Spille halde the bermed area. Oily fluid from gas line drips out of bottom of line. Water discharged heide tank area periodically. Surge Tank PF Large Chemical Storage Large NA Fuel Tank Diseel 500 Fuel Tank Diseel 500 Fuel Tank Diseel 500 Fuel Tank Diseel 1500 Fuel Stack PF 1500 Pump/Compressor UO NA NA Used oil epille around compressor facility. Waste is pumped to the wash tank. Flare Stack PF 1500 Pit PF Very Large

 Table F - 7

 Description of Contamination at Production Stations

CA1069752

Domestic Solid Weste


Station	Spill Source	Spili	Estimated Din	nensions (c)	Description of On-Site Spill	Description of Off-Site Spill
	(a)	Туре(b)	Area (m2)	Depth		
Sacha North #1	Separator	PF	200	2	Sump overflow results in spill to adjacent ditch. Groundwater has oil layer.	None.
	Wash Tank	PF	NA	NA	Small spills appear confined to bermed area.	None.
	Fuel Tank	Disal	200	1	Spills inside and outside tank berm area.	None.
	Flare Stack	PF	500	NA	Surficial spills at base of three stacks.	Spills enter separation pit.
	Pit	PF	Large	NA	Surficial spills around oil recovery tank.	Olly soil and water below discharge pipe. Discharge has been discontinued.
Sacha North #2	Separator	PF	100		Surficial spills around equipment.	Sump contents to underground pipe and off-site discharge.
	Wash Tank	PF	1000	NA	Spills inside bermed area have been collected in a ditch. Sandy soll to at least 3 metres.	Ditch enters sump which drains off-site.
	Surge Tank	PF	400	NA	Spills inside bermed area have been collected in a ditch. Sandy soli to at least 3 metres.	Ditch enters sump which drains off-site.
	Pump/Compressor	PF	100		Surficial epille around equipment.	Sump contents to underground pipe and off—site discharge.
	Flare Stack	PF	NA	NA	Small sufficial spills below one of two stacks.	None.
	Pit	PF	Very Large	NA	High heat area. Sandy soils, Vegetation to edge of two pits. Possible seepage.	Discharge of waste to stream which flows through farmyard. Waste appears confined to channel.
Sacha South	Separator	PF	· 150	NA	Surficiei epills eround equipment.	Sump enters subsurface drainage system. Discharge point unknown.
	Wash Tank	PF	1000	1.5	Oil on shallow groundwater within bermed area.	Ditch enters subsurface drainage system.
					Oil in ditch outside bermed area.	Discharge point unknown.
	Surge Tank	PF	1000	1.5	Oil on shallow groundwater within bermed area.	Ditch enters subsurface drainage system. Discharge point unknown.
	Pump/Compressor	PF	150	NA	Surficial splits around equipment.	Sump enters subsurface drainage system.
	Flare Stack	PF	500	NA	Surficial spills under each of five stacks,	None.
<u>CONF</u> IDENTIA	Pit	PF	Very Large	NA		Oily sediment and water below discharge pipe. Wastes appear confined to stream channel. Strear flows through plantation.

CA1069753

/

Yulabra Wash Tank PF Small NA Small spills are confined to area inside the berm. None. Pump/Compressor PF Large NA Small spills are confined to area inside the berm. None. None. Lined Sump PF Large NA Area adjacent equipment has sufficial spills. Spills Spills have flowed via the ditch to an have entered and on -eite ditch. None. Lined Sump PF NA NA Sump has coeffored and stained soil adjacent None. Flare Stack PF VeryLarge NA Produced fluids have been siphoned to on -eite ditch. Spills have flowed via the ditch to an Pump spills have entered the same ditch. YuCa Separator PF 100 Sufficiel spills around the mehiloid. None. YuCa Separator PF 200 0.3 Sufficiel spills around the mehiloid. None. YuCa Separator PF 200 0.3 Sufficiel spills around the mehiloid. None. YuCa Separator PF 200 0.3 Sufficiel spills around the mehiloid. None.	Station	Spill Source (a)	Spill Type (b)	Estimated Dime Area (m2)	ansions (c) Depth	Description of On-Site Spill	Description of Off-Site Spill
Fuel Tank Diesel 20 1 Surficial spill outside bermed area. None. Pump/Compressor UO 50 0.3 Spills around equipment appear confined to site. None. Flare Stack PF NA NA PR covered in 1992. Unable to investigate due vegetation in the area appears norr to extreme heat and danger near flare ateck. Vegetation in the area appears norr to extreme heat and danger near flare ateck. r/ulebra Wash Tank PF Small NA Small spills are confined to area inside the berm. None. r/ulebra Wash Tank Diesel 20 1 Small spills are confined to area inside the berm. None. r/ulebra Wash Tank Diesel 20 1 Small spills are confined to area inside the berm. None. Pump/Compressor PF Large NA Area adjacent equipment has surficial spills. Spills Spills have flowed via the ditch to an have entered and on -elis ditch. Lined Sump PF NA NA Sump has overflowed and steined soil adjacent None Flare Stack Pit PF VeryLarge NA Produced fluids have flowed to area. Spills have flowed via the ditch to an Pump spills have flowed in the ditch	Culebra	Pipeline	PF	50	0.3	Spills under secondary pipeline adjacent site.	None.
Function Disen 20 1 Subscription None. Pump/Compressor UO 50 0.3 Spills around equipment appears confined to site. None. Pit PF NA NA Pit covered in 1992. Unable to investigate due Vegetation in the area appears norr to extreme heat and denger near flare eteck. /uiebra Wash Tank PF Small NA Small spille are confined to area inside the berm. None. /uiebra Wash Tank Diesel 20 1 Small spille are confined to area inside the berm. None. /uiebra Wash Tank Diesel 20 1 Small spille are confined to area inside the berm. None. /uiebra Wash Tank Diesel 20 1 Small spille are confined to area inside the berm. None. /uiebra Wash Tank Diesel 20 1 Small spille are adjacent equipment has sufficial spills applit spills have flowed via the ditch to a heave antared and an at and sell acid acid acid acid acid acid acid acid		Wesh Tenk	PF	NA	NA	Spills from unbermed tank appear confined to site.	None.
Flare Stack PF NA NA Pit covered in 1992. Unable to investigate due to extreme heat and danger near flare stack. Vegetation in the area appears norr to extreme heat and danger near flare stack. ruiebra Wash Tank PF Small NA Small spills are confined to area inside the berm. None. Pump/Compressor PF Large NA Area adjacent equipment has surficial spills. Spills None. Lined Sump PF NA NA NA NA sea adjacent equipment has surficial spills. Spills None. Flare Stack Pit NA NA NA Na sea selecent. None. Flare Stack Emitting black emoke during assessment. Pit PF Very Large NA Yuca Separator PF 100 Sufficial spills around the same dich. Spills have flowed via the ditch to area upper started to bermed area. Yuca Separator PF 100 Sufficial spills around the same dich. None. Yuca Separator PF 200 0.3 Sufficial spills around the menifold. None. Yuca Separator PF 200 0.3 Sufficial spillis around the sa		Fuel Tank	Diesel	20	2 1	Surficial spill outside bermed area.	None.
fullebra Wash Tank PF Small NA Small spills are confined to area inside the berm. NA Fuel Tank Diesel 20 1 Small spills are confined to area inside the berm. Nore. Pump/Compressor PF Large NA Area adjacent equipment has surficial spills. Spills Spills have flowed via the ditch to an have entered and on - alte ditch. Lined Sump PF NA NA Sump has overflowed and stained soil adjacent None Flare Stack Emitting black smoke during assessment. Pit Pit PF Very Large NA YUCA Separator PF 100 Sufficiel spills around the same ditch. Spills have flowed via the ditch to an Pump spills have anote an adjacent None. YUCA Separator PF 100 Sufficiel spills around the same ditch. Spills have flowed via the ditch to an Pump spills have anote area. YUCA Separator PF 200 0.3 Sufficiel spills around the same ditch. None. YUCA Separator PF 200 0.3 Sufficiel spills around the same ditch. None. YUCA Separator PF 200 0.3 Sufficiel spills around the same ditch. None. YUCA Separator PF 200			UO	50	0.3	Spills around equipment appear confined to site.	None.
Yuisbra Wash Tank PF Small NA Small spills are confined to area inside the berm. None. Fuei Tank Diesel 20 1 Small spills are confined to area inside the berm. None. Pump/Compressor PF Large NA Area adjacent equipment has sufficial spills. Spills Spills have flowed via the ditch to an have entered and on – she ditch. Lined Sump PF NA NA Sump has overflowed and stained soil adjacent None Flare Stack Emitting black emoke during assessment. Produced fluids have been siphoned to on – site ditch. Spills have flowed via the ditch to an Pump spills have entered the same ditch. Yuca Separator PF 100 Sufficial spills around the manifold. None. Yuca Separator PF 200 0.3 Sufficial spills around the manifold. None. Yuca Separator PF 200 0.3 Sufficial spills around the same diate. None. Yuca Separator PF 200 0.3 Sufficial spills around the anaifold. None. Yuca Separator PF 200 0.3 Sufficial spills around the unbermed area.		Pit	PF	NA	NA	Pit covered in 1992. Unable to investigate due	Vegetation in the area appears normal.
Fuel Tank Diesel 20 1 Small spills are confined to area inside the berm. None. Pump/Compressor PF Large NA Area adjacent equipment has surficial spills. Spills Spills have flowed via the ditch to an have entered and on – alte ditch. Lined Sump PF NA NA Sump has overflowed and stained soil adjacent None. Flare Stack Pit PF Very Large NA Produced fluids have been siphoned to on – alte ditch. Spills have flowed via the ditch to an Pump spills have entered the same ditch. Yuca Separator PF 100 Surficial spills around the manifold. None. Yuca Separator PF 50 NA Surficial spills around the manifold. None. Yuca Separator PF 200 0.3 Surficial spills around the manifold. None. Yuca Separator PF 50 NA Surficial spills around the manifold. None. Yuca Separator PF 200 0.3 Surficial spills around the unbermed area. None. Yuca Separator PF 200 0.3 Surficial spills around the unbermed a						to extreme heat and danger near flare steck.	
Pump/Compressor PF Large NA Area adjacent equipment has surficial spills. Spills have flowed via the ditch to a have entered and on-site ditch. Spills have flowed via the ditch to a have entered and on-site ditch. Lined Sump PF NA NA Sump has overflowed and stained soil adjacent None Flare Stack Emitting black emoke during assessment. Emitting black emoke during assessment. Spills have flowed via the ditch to an Pump spills have entered the same ditch. Spills have flowed via the ditch to an Pump spills have entered the same ditch. YUCB Separator PF 100 Surficial spills around the manifold. None. YUCB Separator PF 200 0.3 Surficial spills around the manifold. None. YUCB Separator PF 200 0.3 Surficial spills around the manifold. None. YUCB Separator PF 200 0.3 Surficial spills around the manifold. None. YucB Separator PF 200 0.3 Surficial spills around the manifold. None. Chemical Tank PF 200 0.3 Surficial spills around the unbermed tank. None. Jet Fuel 50	rulebra	Wash Tank	PF	Smell	NA	Small spills are confined to area inside the berm.	NA
Have entered and on-site ditch. Lined Sump PF NA NA Sump has overflowed and stained soil adjacent None Flare Stack Emitting black emoke during assessment. Emitting black emoke during assessment. Spills have flowed via the ditch to an Pump spills have entered the same ditch. Spills have flowed via the ditch to an Pump spills have entered the same ditch. YUCA Separator PF 100 Surficial spills around the manifold. None. YUCA Separator PF 50 NA Surficial spills around the manifold. None. YUCA Separator PF 50 NA Surficial spills around the manifold. None. YUCA Separator PF 50 NA Surficial spills around the manifold. None. YUCA Separator PF 200 0.3 Surficial spills around tank and pipes. Temporary None. YUCA Separator PF 200 0.3 Surficial spills around tank and pipes. Temporary None. YUCA Separator PF 200 0.3 Spills around the unbermed area. None. YUCA Separator PF 200		Fuel Tank	Diesel	20	1	Small spills are confined to area inside the berm.	None.
Flare Stack Filt PF Very Large NA Emitting black smoke during assessment. Spills have flowed via the ditch to an Pump spills have entered the same ditch. YUC8 Separator PF 100 Surficial spills around the manifold. None. YUC8 Separator PF 50 NA Surficial spills around the manifold. None. YUC8 Separator PF 50 NA Surficial spills confined to bermed area. None. YUC8 Separator PF 50 NA Surficial spills around the manifold. None. Yuc9 Wash Tank PF 200 0.3 Surficial spills around the manifold. None. Surge Tank PF 200 0.3 Surficial spills around tank and pipes. Temporary None. Chemical Tank NA 50 0.3 Spills around the unbermed tank. None. Fuel Tank Diesel 100 0.3 Spills helde and outside the bermed area. None. Jet Fuel 50 NA Spills around the unbermed tank. None.		Pump/Compressor	PF	Large	NA		Spills have flowed via the ditch to an off-site wetland
Pit PF Very Large NA Produced fluids have been siphoned to on-site ditch. Spills have flowed via the ditch to an Pump spills have entered the same ditch. YuCa Separator PF 100 Surficial spills around the manifold. None. YuCa Separator PF 50 NA Surficial spills confined to bermed area. None. Wash Tank PF 50 NA Surficial spills confined to bermed area. None. Surge Tank PF 200 0.3 Surficial spills around the unbermed tank and pipes. Temporary None. Chemical Tank NA 50 0.3 Spills around the unbermed tank. None. Fuel Tank Diesel 100 0.3 Spills around the unbermed tank. None. Jet Fuei 50 NA Spills around the unbermed tank. None.		Lined Sump	PF	NA	NA	· · ·	None
Pump spills have entered the same ditch. YuCa Separator PF 100 Surficial spills around the manifold. None. Wash Tank PF 50 NA Surficial spills confined to bermed area. Surge Tank PF 200 0.3 Surficial spills around tank and pipes. Temporary None. Chemical Tank NA 50 0.3 Spills around the unbermed tank. None. Fuel Tank Diesel 100 0.3 Spills helde and outside the bermed area. None. Jet Fuel 50 NA Spills around the unbermed tank. None.		Flare Stack				Emitting black emoke during assessment.	1
Wash Tank PF 50 NA Surficial splils confined to bermed area. Surge Tank PF 200 0.3 Surficial splils around tank and pipes. Temporary None. bermed area contains oily water. Chemical Tank NA 50 0.3 Splils around the unbermed tank. None. Fuel Tank Diesel 100 0.3 Splils helde and outside the bermed area. None. Jet Fuel 50 NA Splils around the unbermed tank. None.		Pit	PF	Very Large	NA	•	Spills have flowed via the ditch to an off-site wetland
Surge Tank PF 200 0.3 Surficial spills around tank and pipes. Temporary bornery bermed area contains oily water. None. Chemical Tank NA 50 0.3 Spills around the unbermed tank. None. Fuel Tank Diesei 100 0.3 Spills inside and outside the bermed area. None. Jet Fuel 50 NA Spills around the unbermed tank. None.	Yuca	Separator	PF	100		Sufficiel spills around the manifold.	None.
bermed area contains oily water. Chemical Tank NA 50 0.3 Spills around the unbermed tank. None. Fuel Tank Diesei 100 0.3 Spills inside and outside the bermed area. None. Jet Fuel 50 NA Spills around the unbermed tank. None.		Wash Tank	PF	50	NA	Surficial spills confined to bermed area.	
Fuel Tank Diesel 100 0.3 Spills inside and outside the bermed area. None. Jet Fuel 50 NA Spills around the unbermed tank. None.		Surge Tank	PF	200	0.3		None.
Jet Fuel 50 NA Splile around the unbermed tank. None.		Chemical Tank	NA	50	0.3	Spills around the unbermed tank.	None.
•		Fuel Tank	Diesel	100	0.3	Spills inside and outside the bermed area.	None.
Pump/Compressor PF 100 NA Surficial spills adjacent equipment. Sump adjacent pumps has overflow into off-site area. Spill appears con PUMP/Compressor PF Large NA Overflow around sump area believed connected to Overflow has flowed downslope and the separators. Connected via underground pipe. Overflow has flowed downslope and the separators. Connected via underground pipe. Overflow has flowed downslope and the separators. Connected via underground pipe. Overflow is through fenced area into the separator pit. Area Discharge to off-site via pit siphon. PUT Fiare Stack PF 100 NA Fiare stack fluids flow into separator pit. Area Discharge to off-site via pit siphon. PUT Discharge of PF Vanue NA NA Discharge of fluid appears confined to			Jet Fuel	50	NA	Spille around the unbermed tank.	None.
Image: Product state Product state NA Overflow around sumplate and the separators. Connected via underground pipe. Overflow has flowed downslope and the separators. Connected via underground pipe. Overflow is through fenced area into the separators. Connected via underground pipe. Overflow is through fenced area into the separators. Connected via underground pipe. Overflow is through fenced area into the separator pit. Area Discharge to off-site via pit siphon. 1 Fiare Stack PF 100 NA Fiare stack fluids flow into separator pit. Area Discharge to off-site via pit siphon. 1 Fiare Stack PF 100 NA Fiare stack fluids flow into separator pit. Area Discharge to off-site via pit siphon. 1 Fiare Stack PF 100 NA Fiare stack fluids flow into separator pit. Area Discharge to off-site via pit siphon. 1 Fiare Stack PF 100 NA Fiare stack fluids flow into separator pit. Area Discharge to off-site via pit siphon. 1 Fiare Stack PF 100 NA PF PF 1 Fiare Stack PF 100 NA PF PF 1 Fiare Stack PF NA PF PF PF PF	PC	Pump/Compressor	PF	100	NA	Surfici el spille adjecent equip ment.	Sump adjacent pumps has overflowed and spilled Into offsite area. Spill appears confined to path.
O D O D + + + + + + File + + + + + + File + + + + + + File + + + + + + + File + + + + + + + + File + + + + + + + + + + + + + + + + + + +		Lined Sump	PF	Large	NA	•	Overflow has flowed downslope and off—site. Overflow is through fenced area into the jungle.
C pr Discharged fluid appears confined to	DEN.	Fiare Stack	₽ F	100	NA	Flare stack fluids flow into separator pit. Area	
	11	Pit	PF	VeryLarge	NA		Discharged fluid appears confined to narrow channel.
Used drume at several locations. Some discarded pipe. None	· N P					Used drums at several locations. Some discarded pipe.	None

Table F - 7

Station	Spill Source	Spill	Estimated Dim	ensions (c)	Description of On-Site Spill	Description of Off-Site Spill
	(a)	Type (b)	Area (m2)	Depth		
Auca	Vehicle Maintenance	uo	200	0.3	Used oil and wash water stains around building.	Waste fluids enter ditch and flow off-site.
Central	Seperator	PF	NA	NA	Surficial spills around equipment.	None.
	Fuel Tank	Diesel	100	0.5	Spills inside bermed area and at fill station. Spill has discharged via drain in berm.	None.
	Pump/Compressor	UO	100	0.3	Oil changes have resulted in spills adjacent equipment and around sump.	None.
	Generator	UO	100	0.3	Oil changes have resulted in spille.	Spills flow down slope towards road.
	Sumpe	PF,UO	Large	NA	Process area drains to subsurface pipe system.	Sumps appear to drain via subsurface pipe to off—site stream. The stream contains olly waste.
	Flare Stack	PF	200	0.3	Spills below each of three stacks.	Separation pit discharges wastes off-site.
					Splite enter separation plt.	Much black smoke emmitted from horizontal flare during spill event while on-site.
	Pit	PF	Large	NA	A large amount of exposed oily sludge is present.	Waste is discharged to off-site stream.
					A large water pond located on the site has a	1
	Domestic Solid Waste				elight hydrocarbon sheen on water surface.	
Auca	Pipeline	PF	40	0.3	Spill below flowlines entering the station.	None.
South	Separator	PF	200	0.3	Separator sump has overflowed.	Overflow has spilled down slope and moved off-sil
2'	Wash Tank	PF	NA	NA		Pooled oily water in off-alte watand east of the wat tank. The source of the spill could be the tank.
	Pump/Compressor	PF	140	0.3	Pindo field transfer pump spill around pumps.	Spill has flowed downslope and off-site.
					Spills around pumps and pump sump.	Pump sump drains downslope to off-site area.
긝	Lined Sump					
Z	Generator	UO	50	0.3	Used oil present on surface around equipment.	Discharge is to produced water separation pit.
7	Flare Stack	PF	100		Surficial spills at base of two stacks.	Spills discharge to produced water separation pit.
FONETNENTIAL	Pit	PF	Very Large			Oil in stream below discharge pipe. Oil in soil below discharge pipe.
.			<u> </u>			
Auca Sur	Fuel Tank	Disad	Large	1	Spill inside and outside of bermed area.	Spill has entered ditch and collects in wetland.
	Pump/Compressor	PF	Large	NA	Spill around equipment and sump.	Spill has entered ditch and collects in low area. Spill has flowed into low area with diesel spill.
	Generator	UO	Large	NA	Spill around equipment from oil changes.	Spill has nowed into low area with dresel spill. Pit fluids discharged to off-site area. Vegetation is
	Pk	PF	Very Large	NA	Oil seepage to surface from former pit.	oil stained to a height of 0.5 metres.

. .

tar.

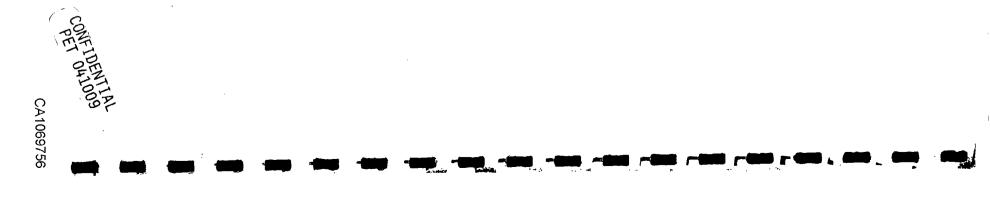
على .

, ·

2 3

14

Station	Spill Source	Spill	Estimated Dim	ensions (c)	Description of On-Site Spill	Description of Off-Site Spill			
	(a)	Type(b)	Area (m2)	Depth					
Cononaco	Lined Sump	PF	NA	NA	Sump overflow enters on-site ditch.	Off-site drainage ditch contains pooled of.			
	Flare Stack	PF	NA	NA	Spills at base of two stacks appear surficial.	Stack fluids discharge to adjacent separation pit.			
	Pit	PF	Very Large	NA	Spills around skimmed oil holding tank adjacent pit.	Discharge to off-site channel. Oil in soil and water			
Dureno	Surge Tank	PF	20	0.1	Spill located around edge of tank.	None			
	Lined Sump	PF	20	NA	Sump has overflowed causing surficial stain.	Small spill downslope to jungle. Confined to path.			
	Flare Stack	PF	100	0.1	Most of spill confined to stack pad.	Small apilt downstope to jungle.			
						Dead trees near flare stack. Possible heat damage			
	Pit	PF	Very Large	NA	None	Discharge is downslope to jungle and stream.			


 Table F – 7

 Description of Contamination at Production Stations

(a) Information not provided unless a split has been identified.

(b) PF = Produced fluids containing oil and water. UO = Used oil

- (c) Dimensions have been visually estimated. Depth estimated using limited hand operated auger investigations and knowledge of soil types. Estimates of spill area and depth are based on a very limited amount of data. More reliable estimates cannot be prepared without additional field data.
- (d) NA = Not evaluable. Usually not available due to fimited information and/or eatery concerns related to obtaining information.

			Product	Storage *	Tarik Berms (a)	Flare Stacks (b)						
Productio	n Station	No.	Area (m2)	Depth (m)	Berm Condition	Drain Control	No. Hor,	No. Vert.	Complete Combustion	Stack Condition	Comments		
Lago Agrio	Central	2	4,800	1.5	Good	Yes	0	4	Yes	Good	Condensate knockout to pl		
	North	2	7,150	1.2	Good	Yes	0	3	Yes	Good	Condensate knockout to pl		
Parahuacu		2	2,925	1.5	Good	Yes	0	2	No	Good	Condensate knockout to pi Some smoke emitted.		
Atacapi		2	1,200	1.5	Good	NA	0	3	Yes	Good	Condensate knockout to pl		
Guanta		3	2,301	12	Good	Yes	0	2	Yes	Good	Condensate spills to surfac		
Aguarloo		2	7,400	1.2	Poor	Yes	1	2	No	Poor	Condensate spills to surfac		
Shushufindi	Central	3	36,150	1.3	Good	Yes	0	8	No	Good	Condensate spills to surfac		
ſ	North	2	13,000	1	Poor	Yes		2	Yes	Good	Condensate spills to surfac		
							1		No	Poor	Condensate knockout to pl		
[South	2	14,400	1.5	Good	Yes	0	9	No	Poor	Condensate knockout to pl		
ſ	Southwest	2	6,500	1	Poor (surge)	Yes		2	Yes	Good	Condensate spills to surfac		
					Good (wash)	Yes	1		No	Poor	Condensate knockout to pl		
	Water Inj.	Not Pre	sent				0	0					
Sacha	Central	3	44,800	1.3	Good	Yes	0	3	Yes	Good	Condensate spills to surfac		
(North # 1	2	28,000	1.3	Good	Yes	0	3	No	Good	Condensate splits to surface		
	North #2	2	5,000	1.2	Good	Yes	0	2	Yes	Good	Condensate spills to surface		
	South	2	6,250	1. 2	Poor	Yes	0	5	Yes	Good	Condensate spills to surfac		
Culebra		Not Pre	sent				0	1	Yes	Good	Condensate spills to surface		
Yulebra		Not Pre	sent				0	1	No	NA	Condensate spills to surface		

1

Table F - 8

---- #

1

۴.

Condition of Tank Berms and Flare Stacks at Production Stations

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069757

CA1069757

;

Table F - 8

Condition of Tank Berms and Flare Stacks at Production Stations

			Produc	t Storage T	ank Berms (i	a)				lare Stacks (b)
Production	Production Station		Area	Depth	Berm	Drain	No.	No.	Complete	Stack	Comments
			(m2)	(m)	Condition	Control	Hor.	Vert,	Combustion	Condition	1
Yuca		2	10,400	2	Poor	Yes		0		3 Poor	Condensate spills to pit.
Auca	Central	3	15,850	2	Poor	Yes	0	3	No	Poor	Condensate knockout to pit. Large burn event while on site.
	South	2	9,450	2	Good	Yes	0	3	Yes	Good	Condensate knockout to pit.
Auca Sur		Not Pre	sent				0	1	Not Lit	Good	Condensate spills to surface.
Cononaco		2	8.000	1.5	Good	Yes	0	2	Yes	Good	Condensate knockout to pit.
Dureno		Not Pre	sent				0	2	Yes	Good	Condensate knockout to pit.
											Some vegetation damage due to heat.

(a) Berm area is the combined estimated area within wash tank and surge tank berms. Condition of berm is noted as good if asphalt cover is intact and no breaches are present. Condition of berm is noted as poor when breaches are present or asphalt cover is in poor condition. Drain control is noted as present if drains are present and equiped with shutoff valves.

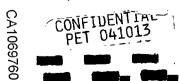
(b) Hor. = Horizontal flare stack. Horizontal stacks vent only at separation pils.

Vert. = Vertical flare stack. Complete combustion of gases is noted as 'no' if smoke was emitted from the stack at any time during the assessment. Condition of the flare stacks was noted as poor if they ware not vertical, appeared bent or appeared burnt (ie. ragged metal).

CA1069758

CA1069758

CONFID PET 0


94 4

T

Plt	Pit	• Pit	Sep.		ated Dimen		Oily		Over-	Berm	Dlich	Siphon	Seep		charge	
No.	Status	Usə	Stage	1	Thickness				flow Yes/No	Yes/No				and the second se	Steam	Comments
			#	(m2)	OII	Vater	Yes/No				Yes/No	Yes/No	Yes/No	Yes/No	Yes/No	
							Yea	Produ	ced fiul	dshave	been d	ischarged	to the e	nvironn	nent or see	page has been identified.
ago	Agrio	Central														
1	Open	Separation	1	600	1	0.5	Yes	1	No	Yes	Yes	No	No	Yes	No	Input = Oily waste from off-site via truck &
2	Open	Separation	2	150	0.1	1.5	Yes	1	No	Yes	Yes	No	No	Yes	No	produced water from station.
3	Open	Separation	3	150	Film	1.5	Yes	1	No	Yes	Yes	No	No	No	S Spring &	Extensive contamination below discharge.
4	Open	Haz Waste		NA												Under construction.
5	Open	Separation	1		0											Under construction. Concrete lined.
6	Open	Waste		16	0.05	1	Yes	0.5	Yes	Yes	Yes	Yes	No	No	1000	Overflow to wetland.
Lago	Agrio	North														
1	Open	Separation	1	100	0.01	1.5	No	0.5	No	Yes	No	Yes	No	Yes	No	Concrete lined, input = off-site oily waste
2	Open	Separation	2	100	0	1.5	No	0.5	No	Yes	No	Yes	No	No	1. (Y 100)	and produced water from production static
3	Open	Separation	1	200	0	1.5	Yes	1	No	Yes	Na	Yes	No	Yes	No	· ·
4	Open	Separation	2	225	0.01	1.5	Yes	1	No	Y88	No	Yes	No	No	187 8 1	Extensive contamination below discharge.
Para	huacu										<u></u>					
1	Open	Separation	Final	1575	0.02	2.5	Yes	1	No	Yes	No	Yes	No	No	No. Contraction of the second se	Adjacent water pond not connected.
																Extensive contamination below discharge.
Atac	api					·				· · · · · · · · · · · · · · · · · · ·				_		
1	Open	Separation	1	560	0.03	2.5	Yes	0.75	No	Yes	No	Yes	No	Yes	No	The pits are located adjacent a steep slope
2	Open	Separation	2	270	Film	1.5	Yes	0.75	No	Yes	Yes	No	No	Yes	No	
3	Open	Separation	Final	400	Film	1.5	Yes	0.5	No	Yes	No	Yes	No	No		Extensive contamination below discharge.
Gua	nta															
, 1	Open	Separation	1	1444	0.02	2	Yes	0.75	No	Yes	No	Yes	No	Pit 2	No	Film in Pit #3 is reddish brown.
2	Ореп	Separation	2	400	0.01	2	Yes	0.75	No	Yes	No	Yes	No	Pit 3	No	
2	Open	Separation	Final	400	Film	2	Yes	0.75	No	Yes	No	Yes	No	No	Yes	Extensive contamination below discharge.
4	Орел	Gas Vent		64	0	1.5	No	1	No	Yes	No	No	No	No	No	Berm is vegetated to water level.
																-
-,																

Table F -- 9 escription of Contamination Associated With Production Station Pit

Pit	Pit	Pit	Sep.	Estim	ated Dim	enalons	Oly	Free	Over-	Berm	Ditch	Siphon	Seep	Disc	harge	
NO.	No. Status Use Stag	Stage	Area	Thickness (m		Sludge	Board	flow					to Pit	Stream	Commenta	
		#	(m2)	Oil	Water Yes/I	Yes/No	(m)	Yes/No	Yes/No	Yes/No	es/No Yes/No	Yes/No	Y 88/NO	Yes/No		
								Prod	uced flui	ds have	bøen di	scharged	to the er	wronm	ent or see	page has been identified.
qu	arico						-									
1	Open	Unknown		NA	0	1.5	No	NA	No	Yes	No	Yes	No	No	NA COL	Extensive erosion below discharge.
2	Open	Separation		700	Film	0.1	No	2	No	Yes	No	No	No	No	No	Pit recently constructed,
3	Breached	Not in use	1	NA	NA	. 0	Yes	0	Yes	No	No	No	No	No	SC.	Severe damage around possible pits 3 and
4	Breached	Not in use	1	NA	NA	. 0	Yes	0	Yes	No	No	No	No	No		Possibly former discharge without separation Extensive contamination below discharge.
Shu	shufindi	Central												<u>-</u>		
1	Open	Off-site oil	1	693	0.5	2.5	Yes	0.5	No	Yes	No	Yes	323.0	Yes	No	Input = Oily waste from off-site via truck.
2	Open	Separation	2	147	0.5	1.5	Yes	0.2	No	Yes	No	Yes		Yes	No	Pit 1 separation.
3	Open	Separation	1	1056	0.2	2	Yes	0.5	No	Yes	Yes	No	No	Yes	No	Input = Produced water from station.
4	Open	Oll Storage		342	1.5	3	Yes	1	Yes	Yes	No	Yes	Stand St.	No	No	Recovered oil from pit 3 pumped to station.
5	Open	Separation	2	480	Film	3	Yes	0.5	No	Yes	Yes	No	No	Yes	No	
6	Open	Separation	3	340	0.1	2	Yes	0.5	No	Yes	Yes	No	No	Yes	No	
7		Oli recovery		4	0	0	Yes	2	No	Yes	No	No	No	No	No	Small oil recovery pit.
8	-	Separation	4	1598	Film	3	Yes	0.5	No	Yes	No	Yes	No	No		Direct discharge to wetland. Discharge area does not appear to be sever contaminated. Continuous mechanical oli recovery in practice.
9	Open	Gas Vent		300	0.02	2	Yes	1	No	Yes	No	No	No	No	No	Located at end of vent line.
hu	shufindi	North														
1	Open	Flare		928	NA	0	No	1	Yes	Yes	No	No	<u> </u>	No	No	Large spill beyond plt area.
2	Open	Separation	1	144	0.01	1.5	Yes	0.3	Yes	Yes	No	Yes	No	Yes		Water bolling hot / oil burning.
3	Open	Separation	2	144	Film	1.5	Yes	0.5	Yes	Yes	Yes	No	No	Yes	Star.	
4		Separation	3	400	0	1.5	Yes	1	No	Yes	No	No	No	No		Extensive contamination below discharge. Discharge to stream.
5	Open	Unknown		1200	0.05	1	Yes	0	Yes	No	No	No		No	1211 C	-

Table F – 9 Description of Contamination Associated With Production Station Pits

Pit	Pit	Pit	Sep.	Estima	ted Dim	ed Dimensions		Free	Over	Berm	Ditch	Siphon	Seep	Discharge		× ·
No	Status	Úse	Stage	BerA	Thicknes	<u>ss (m)</u>	Sludge	Board	flow	· · · · ·				to Pit	Stream	Comments
L			#	(m2)	Oll	Water	Yes/No) (m)	Yes/No	Yes/No	Yes/No	Yes/No	Yes/No	Yes/No	Yes/No	
							Yes	Prod	uced flu	ids have	been di	scharged	to the e	nvironn	nent or see	page has been identified.
Shi	ushufindi	South														
1	Open	Separation	1	625	Film	1.5	Yes	0.5	No	Yes	Yes	No	No	Yes	No	
2	Open	Separation	2	625	Film	1.5		0.5		Yes	Yes	No	No	Yes	No	
- 3	Open	Separation	3	625	0.01	1.5		0.5		Yes	No	Yes	No	Yes	No	
4	Open	Separation	4	1089	Film	1.5		0.5		Yes	No	Yes	No	Yes	No	
5	Open	Separation	5	1089	Film	1.5		0.5		Yes	Yes	Yes	No	Na	Yes	
6	Open	Separation	J	4	0	0	No	2		No	No	No	No	No	No	Beside pit #3. No water migration from
·	Opon	Copulation		-	v	Ŭ		L			140	110	140		NO	Extensive contamination below discharge. Proximity to flare prevented further apprais
7	Open	Flaring		625	NA	0	Yes	1	Yes	No	Yes	No	No	Yes	11. Yes	
8	Open	Unknown		800	NA	0	Yes	5	Yes	No	No	No	No	No	Yes	Near well site SSF 23. Former waste du
<u>Sh</u>	<u>ishufindi</u>	Southwest														1
1	Open	Separation	1	3500	0.05	2	Yes	0.3	No	Yes	No	Yes	No	Yes	No	Flare condensate discharge to pit #1.
2	Open	Separation	2	1800	0.05	2	Yes	0.5	No	Yes	Yes	No	No	Yes	No	The oil in Pit #2 is tar like.
3	Open	Separation	NA	1400	0	0	No	2	No	Yes	No	No	No	No	No	Pit #3 usage is not known.
4	Open	Separation	Final	2250	Film	2	Yes	1.5	No	Yes	Yes	Yes	No	No		Pit #4 discharge to channel, then stream
Wa	ter Inj.															Extensive contamination below dischargen No pits found
												_				
<u>Sac</u>	cha Cent	ral														
1	Open	Separation	1	702	0.1	2	Yes	. 1	No	Yes	No	Yes	No	Yes	No	Input = Produced water from station.
2	Open	Separation	2	100	0.1	2	Yes	1	Yes	Yes	No	Yes	No	Yes	No	Oil to sump and overflow ditch.
3	Open	Separation	3	100	0.1	2	Yes	1	No	Yes	No	Yes	No	No	Yes	Extensive contamination below discharg
4	Open															Not in use. Under construction.
Sac	cha Norti	<u>1 #1</u>														
<u></u> 1	Open	Separation	1	1800	0.1	1.5	Yes	1	No	No	No	Yes	No	No	Yes /	Extensive contamination below discharge
6																Oil recovery during assessment
CONF																No discharge during assessment
	Open	Separation	1,2,3	NA	NA	1.5	No	0.75	No	Yes	No	Yes	No	No	LYP9.	New Installation.
DENT	Covered	Workover		NA	0	0	No		No		No	No	No	No	No	Covered in 1992.
∃ 4	Open	Gas Vent		100	0	2	No	1	No	Yes	No	No	No	No	No	Presence of gas prevented further appra

Pit No.	Pit Status	Pit Use	Sep. Stage #		ated Dimen Thickness Oil V	(m)	Oily Sludge Yes/No	Board	Over- flow Yes/No			Siphon Yes/No		to Pli	harge Stream Yes/No	Comments
								Produ	iced flui	ids have	been dis	charged	to the en	vironm	ent or see	page has been identified.
<u>ach</u>	na North	<u>#2</u>							•				Minakataninatik			
1	Open	Separation	1	625	0.01	2	Yes	1	No	Yes	No	Yes		Yes	No	Both pits constructed in sandy soil.
2	Open	Separation	2	625	Film	2	Yes	1	No	Yes	No	Yes	No	No		Extensive contamination below discharge
	- 0															Extreme heat from adjacent flares.
acn I	la Souti Open	Separation	1	64	1	0.5	Yes	0.75	No	Yes	No	Yes	No	Yes	No	Both pits are reportedly present over a
2	Open	Separation	2	64	0.02	1.5	Yes	0.75	No	Yes	Yes	Yes	No	No		former pit (now covered).
-	opon		-				•									Discharge to stream discontinued in 1992.
3	Open	Gas Vent		100	0	1.5	No	1	No	Yes	No	No	No	No	No	Empty drums in pit.
4	Open	Gas Vent		100	0	1.5	No	1	No	Yes	No	No	No	No	No	
5	Open	Separation	1,2,3	NA	NA	1.5	No	0.75	No	Yes	No	Yes	No	No	1999 S.	Extensive contamination below discharge
ule	bra				···											
1	Closed	Unknown		NA					NA				NA			Not investigated due to safety concerns.
																Extreme heat from flare stack.
																Pit covered in 1992.
ulel	bra											······				
1	Open	Unknown	1	150	0.1	1.5	Yes	0.75	No	Yes	No	Yes	No	No	Yee	Possible former separation pit
																Extensive contamination below discharge
uca	!												•1-	A1-		
1	Open	Separation	1	1050	0.05	2.5	Yes	0.5	No	No	No	Yes	No	No		Input = Oily waste from well sites. Extensive contamination below discharge.
		مر آ م ^ر تو														
ſ	CONFI	DENTIAL 041015														ſ
1	PET	041017														

 Table F – 9

 Description of Contamination Associated With Production Station Pits

.

l

i i i

J.

.

Pli No.	Pit Status	Pit	Sep.		ated Dime		Oily	Free	Over-	Berm	Ditch	Siphon	Seep		charge	
1 110.	SIGINS	Use	Stage #	Area (m2)	Thicknes Oil	····	Sludge Yes/No		1low Yes/No	Yea/No	Yes/No	Yes/No	Yes/No	_	Stream Yes/No	Comments
							Yea									page has been identified.
Auc	a Centr	al	<u></u>		· <u>···</u> ·····											······································
1	Open	Separation	1	400	0.1	1.5	Yes	1	No	Yes	No	Yes	No	Yes	No	Input = Oily waste from well sites.
2	Open	Separation	2	1200	Film	1.5	Yes	. 1	No	Yes	No	Yes	No	No	Yes	Input = Produced water from station. Extensive contamination below discharg
3	Open	Sewage	5 lagoons	NA	0		No									
Auc	a South	•	-													
1	Open	Separation	1	150	0.01	1.5		0.5	No	Yes	Yes	No	No	Yes	No	Pits vulnerable to erosion damage.
2	Open	Separation	2	150	Film	1.5	Yes	0.2	No	Yes	No	Yes	No	No	<u>C'a</u>	Tar like oil patches in pit. Extensive contamination below discharg
3	Open	Sewage	2 lagoons	100												Reportedly out of use.
Auc	a Sur	· · · · · · · · · · · · · · · · · ·						_								······································
1	Closed	Separation	1	400							Yes	No	No	No	NG2	Produced water piped to Auca Central.
2	Closed	Workover		150							No	No	S.U.1	No	No	Large off-site overflow and contaminat Pits 1 & 2 covered in 1993.
3	Open	Used Oil		2	1	0	Yes	0.5	Yes	No	No	No	Vett	No	No	Overflow to wetland.
Cor	опасо	·····									··		<u> </u>			
1	Open	Separation	1	1500	0.05	3	Yes	1	No	Yes	No	Yes	No	No	Yea	Extensive contamination below discharg
Dur	eno															
1	Open	Separation	1	62 5	0.01	2.5	Yes	0.75	No	Yes	No	Yes	No	No	Y(B)	Extensive contamination below discharg

Table F - 10

Description of Contamination Along Assessed Segments of Secondary Pipeline

Secondary Pi	peline Corridor	Assessed	Assessed	Description of Spill
Beginning	End	Segment	Length	and
		Number	(Km)	Comments
Atacapi Station	Guanta Juntion	1	2.5	No spills observed along assessed segment.
Guanta Juntion	Lago Agrio Station	1	2.5	No spills observed along assessed segment.
Lago Agrio Station	Shushufindi Juntion	1 2	3.0 3.0	No spills observed along assessed segment. No spills observed along assessed segment.
Shushufindi Juntion	Shushufindi Station	1 2	2.0 2.0	No spills observed along assessed segment. No spills observed along assessed segment.
Shushufindi Station	Aguarico Station	1	3.0	Small 2 m2 spill below valve noted. Located between well sites SSF A9 and SSF B64.
Shushufindi Juntion	Yulebra Juntion	1 2 3	2.3 2.3 2.3	No spills observed along assessed segment. No spills observed along assessed segment. No spills observed along assessed segment.
Yulebra Juntion	Yuca Station	1	3.0	No spills observed along assessed segment.
Yulebra Juntion	Cononaco Station	1 2 3 4	2.5 2.5 2.5 2.5	No spills observed along assessed segment. No spills observed along assessed segment. No spills observed along assessed segment. No spills observed along assessed segment.
	Total	15	38	

CA1069764

PE)

0410

					-		SIT	ENUMBER	
						:			: 1
	· · · · · · · · · · · · · · · · · · ·								
									:
						•••••••			
		· · · · · · · · · · · · · · · · · · ·				:			
		: 							
:									
	:								
:						· · ·			
	:						•		
	:								
	i		:						
				LE	egend 8	Sample locations	•	Đ	Tank
		NO NUMBE			× ®	Auger hole abee Well head		<u>م</u> ٩	Spill Pit
entractor:	HBT AGRA I 221-18th Str Calgary, Alb TELEX: 03-1 FAX: (403) 2		n			Above ground fer Below ground fer Berm Drainage directio Residence Roadway Stream	atura		Building Cepresex F Mound T Siope —— Well Site

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

٩

F

CA1069765

ning & Environmental :	ted Services				
PITS		-			
TYPE OF PIT:		P/WORKOVER PIT	WASTE PIT OTHER		
PIT CONTENTS:		FLUIDS O WATER	O DRILL MUD		
PIT DIMENSIONS: PIT BOTTOM RELATI		LENGTH AT GRADE BELOW GRADE ABOVE GRADE	m	m DEPTH	- m
PIT USAGE:				IOWN	
S THE PIT BERMED					
WAS THE SUBSURF	ACE ADJACENT TO	THE PIT PROBED WITH			
DEPTH OF AUGER P		m	DISTANC		
					Π
DESCRIPTION OF SC	DIL MATERIALS ADJ	ACENT THE PIT:			
		ACENT THE PIT:			
EVIDENCE OF SPILL	S/OVERFLOW:				
EVIDENCE OF SPILL	S/OVERFLOW:	m ² (include	alt spills)	OF SPILL AREAS	-
EVIDENCE OF SPILL ESTIMATED SPILL AI S MORE THAN ONE	S/OVERFLOW: REA SPILL AREA PRESE	m ² (include	all spills) NO NUMBEF	OF SPILL AREAS	-
EVIDENCE OF SPILL ESTIMATED SPILL AI S MORE THAN ONE ESTIMATED AVERAG	S/OVERFLOW: REA SPILL AREA PRESE SE CONTAMINATED SEN RECORDED ON	m ² (include ENT? YES THICKNESS WITHIN SP THE SKETCH MAP?	all spills) NO NUMBEF PILL AREA	OF SPILL AREASm	-
EVIDENCE OF SPILL ESTIMATED SPILL AI S MORE THAN ONE ESTIMATED AVERAG HAVE ALL SPILLS BE HAS THE SPILL MIGF	S/OVERFLOW: REA SPILL AREA PRESE SE CONTAMINATED EN RECORDED ON RATED BEYOND THI	m² (include ENT?	all spills) NO NUMBEF PILL AREA O YES Y? D YES	OF SPILL AREASm m NO	-
EVIDENCE OF SPILL ESTIMATED SPILL AI S MORE THAN ONE ESTIMATED AVERAG HAVE ALL SPILLS BE HAS THE SPILL MIGF	S/OVERFLOW: REA SPILL AREA PRESE E CONTAMINATED EN RECORDED ON RATED BEYOND THI ERED A WATER COM	m² (include ENT?	all spills) NO NUMBEF PILL AREA Y? D YES U YES U YES	OF SPILL AREASm m m NO NO NO	
EVIDENCE OF SPILL ESTIMATED SPILL AI S MORE THAN ONE ESTIMATED AVERAG HAVE ALL SPILLS BE HAS THE SPILL MIGE HAS THE SPILL ENTE I YES provide details_	S/OVERFLOW: REA SPILL AREA PRESE E CONTAMINATED EN RECORDED ON RATED BEYOND THI ERED A WATER COM	m ² (include ENT? I YES I THICKNESS WITHIN SP THE SKETCH MAP? E WELLSITE BOUNDAR URSE? AINED? I YI	all spills) NO NUMBEF PILL AREA Y? YES YES YES ES NO If YE	OF SPILL AREASm m m NO NO NO NO S see attached Sample Summa	
EVIDENCE OF SPILL ESTIMATED SPILL AI S MORE THAN ONE ESTIMATED AVERAG HAVE ALL SPILLS BE HAS THE SPILL MIGF HAS THE SPILL ENTE IT S provide details WERE SOIL OR SLUE	S/OVERFLOW: REA SPILL AREA PRESE E CONTAMINATED EN RECORDED ON RATED BEYOND THI ERED A WATER COM OGE SAMPLES OBT, DETAIL:	m² (include ENT?	all spills) NO NUMBER PILL AREA Y? YES YES ES NO H YE	OF SPILL AREASm O NO NO NO S see attached Sample Summa	
EVIDENCE OF SPILL ESTIMATED SPILL AI S MORE THAN ONE ESTIMATED AVERAG HAVE ALL SPILLS BE HAS THE SPILL MIGE HAS THE SPILL ENTE I YES provide details WERE SOIL OR SLUE PIT ABANDONMENT	S/OVERFLOW: REA SPILL AREA PRESE E CONTAMINATED EN RECORDED ON RATED BEYOND THI ERED A WATER COM DETAIL: GETATION ADJACE	m² (include	all spills) NO NUMBER PILL AREA Y? YES YES ES NO H YE	OF SPILL AREASmmmmNONONOS see attached Sample Summa	

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

			SITE NUMBER
STORAGE TANK	-		
TANK TYPE:	PRODUCT STORAGE TAN	ік 🗉	CHEMICAL TANK
		Q	KNOCKOUT TANK
	FUEL TANK		
		_	
IS THE TANK LOCATED ABOVE	E GROUND OR UNDERGROUND	?	
IS THE TANK WITHIN A BERME	D AREA?		<u> </u>
BERM DIMENSIONS:	LENGTH	m WIDTH _	m Height
BERM BOTTOM RELATIVE ELE	VATION: AT GRADE		
	BELOW GRADE	m	
	ABOVE GRADE		
CONDITION OF BERM/CONSTR	RUCTION DETAILS:		
	ED WITH A HAND OPERATED A		
		OGENT	
DEPTH OF PENETRATION			
ESTIMATED SPILL AREA:	m²	(include all spil	is)
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE	m² A PRESENT? O YES C	(include all spii NO NI	IS) JMBER OF SPILLS
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTA	MP M2	(include all spil DNO NU PILL AREA	a) JMBER OF SPILLSm
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTAI HAVE ALL SPILLS BEEN RECO	MP A PRESENT? D YES MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP?	(include all spil DNO NU PILL AREA	a) JMBER OF SPILLSm
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTA	MP A PRESENT? D YES D MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP?	(include all spil NO NI PILL AREA Q YES Q YES	IS) JMBER OF SPILLS m NO NO
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTA HAVE ALL SPILLS BEEN RECO HAVE SPILLS MIGRATED BEYC HAS THE SPILL ENTERED A WA	M ² A PRESENT? I YES MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP? OND THE BERMED AREA?	(include all spil NO NI PILL AREA YES	IS) JMBER OF SPILLS m NO NO
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTA HAVE ALL SPILLS BEEN RECO HAVE SPILLS MIGRATED BEYO HAS THE SPILL ENTERED A WA If YES prodive details	M ² A PRESENT? I YES MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP? OND THE BERMED AREA?	(include all spil NO NU PILL AREA VES VES VES	is) JMBER OF SPILLSm m NO NO NO
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTA HAVE ALL SPILLS BEEN RECO HAVE SPILLS MIGRATED BEYO HAS THE SPILL ENTERED A WA If YES prodive details	M ² A PRESENT? D YES D MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP? OND THE BERMED AREA? ATER COURSE?	(include all spil NO NU PILL AREA YES YES YES	attached sample summary
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTA HAVE ALL SPILLS BEEN RECO HAVE SPILLS MIGRATED BEYO HAS THE SPILL ENTERED A WA If YES prodive details	M ² A PRESENT? I YES I MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP? OND THE BERMED AREA? ATER COURSE? ED? I YES I NO	(include all spil NO NU PILL AREA YES YES YES	attached sample summary
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTAI HAVE ALL SPILLS BEEN RECO HAVE SPILLS MIGRATED BEYO HAS THE SPILL ENTERED A WA If YES prodive details WERE SOIL SAMPLES OBTAIN ABANDONMENT DETAIL:	MPESENT? I YES I MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP? OND THE BERMED AREA? ATER COURSE? ED? I YES I NO	(include all spil NO NU PILL AREA YES YES I YES If YES see	Is) JMBER OF SPILLSm NO NO NO NO NO Attached sample summary
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTAI HAVE ALL SPILLS BEEN RECO HAVE SPILLS MIGRATED BEYO HAS THE SPILL ENTERED A WA If YES prodive details WERE SOIL SAMPLES OBTAIN ABANDONMENT DETAIL:	M ² A PRESENT? I YES I MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP? OND THE BERMED AREA? ATER COURSE? ED? I YES I NO	(include all spil NO NU PILL AREA YES YES I YES If YES see	Is) JMBER OF SPILLSm NO NO NO NO NO Attached sample summary
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTAI HAVE ALL SPILLS BEEN RECO HAVE SPILLS MIGRATED BEYO HAS THE SPILL ENTERED A WA If YES prodive details WERE SOIL SAMPLES OBTAIN ABANDONMENT DETAIL:	MPESENT? I YES I MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP? OND THE BERMED AREA? ATER COURSE? ED? I YES I NO	(include all spil NO NU PILL AREA YES YES I YES If YES see	Is) JMBER OF SPILLSm NO NO NO NO NO Attached sample summary
ESTIMATED SPILL AREA: IS MORE THAT ONE SPILL ARE ESTIMATED AVERAGE CONTAI HAVE ALL SPILLS BEEN RECO HAVE SPILLS MIGRATED BEYO HAS THE SPILL ENTERED A WA If YES prodive details WERE SOIL SAMPLES OBTAIN ABANDONMENT DETAIL:	MPESENT? I YES I MINATED THICKNESS WITHIN S RDED ON THE SKETCH MAP? OND THE BERMED AREA? ATER COURSE? ED? I YES I NO	(include all spil NO NU PILL AREA YES YES I YES If YES see	Is) JMBER OF SPILLSm NO NO NO NO NO Attached sample summary

ch a

÷

: : : :

•

ł

1

i

÷

I

ering & Environmental Se	ed anices		SITE NUMBER	
WELLHEAD		-		
POWER SOURCE:		GAS/DIESEL		
	ARE TRANSFORME	RS IN USE ON THE WELLSIT	E? QYES Q NO	
CHEMICALS CURREN	ITLY IN USE AT WELLHE	EAD:		
WAS THE SUBSURFA	CE PROBED WITH A HA	ND OPERATED AUGER?		
DEPTH OF PENETRA	TIONm			
DESCRIPTION OF SO	IL MATERIALS ADJACEN	NT THE WELLHEAD:	·····	
	-			
ESTIMATED SPILL AR	EA:	m2 (include all a	spills)	
ESTIMATED AVERAG		CKNESS:	m	
S MORE THAN ONE S			IER OF SPILL AREAS	
		SKETCH MAP? 🔲 YE		[
	EN RECORDED ON THE			
	ATING FROM THE WELL	LHEAD MIGRATED BEYOND	THE WELLSITE BOUNDARY?	YES INO
	ATING FROM THE WELL		THE WELLSITE BOUNDARY?	YES DINO
HAS THE SPILL ENTE	ATING FROM THE WELL	LHEAD MIGRATED BEYOND	THE WELLSITE BOUNDARY?	D YES D NO
HAS THE SPILL ENTE If YES provide detail	ATING FROM THE WELL		THE WELLSITE BOUNDARY? C	D YES D NO
HAS THE SPILL ENTE If YES provide detail WERE SAMPLES OBT	ATING FROM THE WELL RED A WATER COURSE	LHEAD MIGRATED BEYOND	THE WELLSITE BOUNDARY? C	D YES D NO
HAS THE SPILL ENTE If YES provide detail WERE SAMPLES OBT	ATING FROM THE WELL RED A WATER COURSE	LHEAD MIGRATED BEYOND E?	THE WELLSITE BOUNDARY? C	D YES D NO
HAS THE SPILL ENTE If YES provide detail WERE SAMPLES OBT	ATING FROM THE WELL RED A WATER COURSE AINED?	LHEAD MIGRATED BEYOND E?	THE WELLSITE BOUNDARY? C	D YES D NO
HAS THE SPILL ENTE If YES provide detail WERE SAMPLES OBT	ATING FROM THE WELL RED A WATER COURSE AINED?	LHEAD MIGRATED BEYOND E?	THE WELLSITE BOUNDARY? C	D YES D NO
HAS THE SPILL ENTE If YES provide detail WERE SAMPLES OBT	ATING FROM THE WELL RED A WATER COURSE AINED?	LHEAD MIGRATED BEYOND E?	THE WELLSITE BOUNDARY? C	
HAS THE SPILL ENTE If YES provide detail WERE SAMPLES OBT	ATING FROM THE WELL RED A WATER COURSE AINED?	LHEAD MIGRATED BEYOND E?	THE WELLSITE BOUNDARY? C	D YES D NO

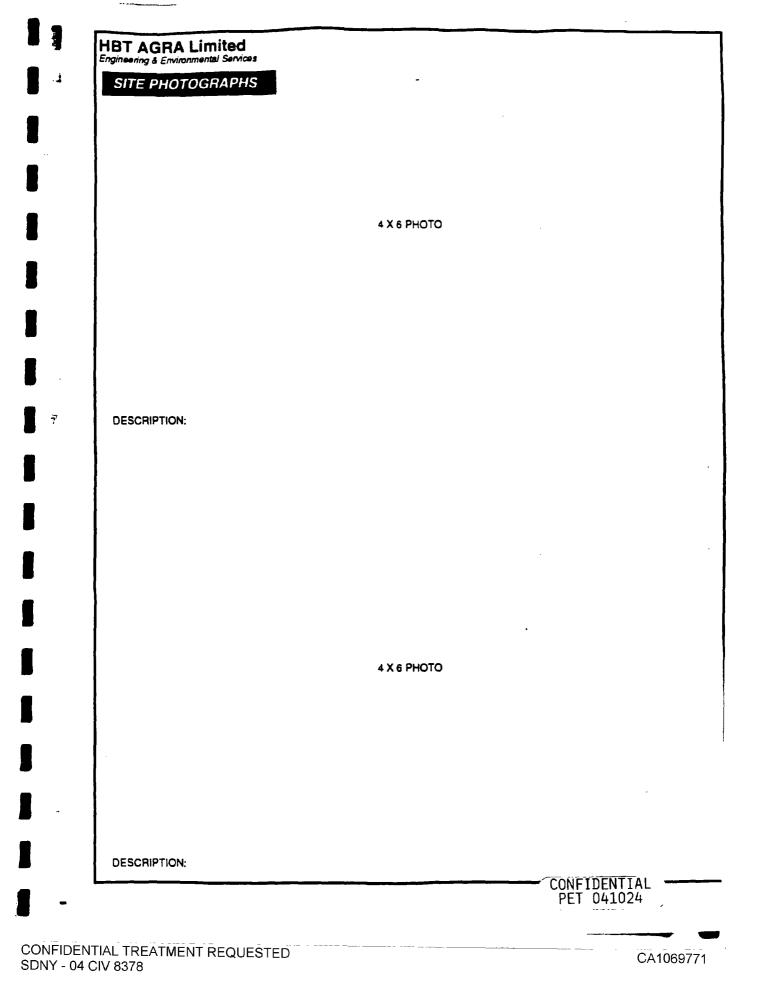
1

BT AGRA Limited	 \$83	SI	
PROCESS EQUIPME	INT	-	
EQUIPMENT TYPE:	D FLARE STACK		
	SEPARATOR	HEATER	
WAS THE SUBSURFACE P	ROBED WITH A HAND OPERATE	ED AUGER? 🗅 YES 🗅 NO	
DEPTH OF PENETRATION	m		
DESCRIPTION OF SOIL MA	TERIALS ADJACENT THE PROC	CESS AREA:	
ESTIMATED SPILL AREA: _	n	n2 (include all spills)	
ESTIMATED AVERAGE CO	NTAMINATED THICKNESS:	m	
S MORE THAN ONE SPILL		O NO NUMBER OF SPIL	L AREAS
HAVE ALL SPILLS BEEN RE	CORDED ON THE SKETCH MAI	P? QIYES QINO	
HAVE SPILLS MIGRATED E	BEYOND THE SITE BOUNDARY	? 🗆 YES 💷 NO	
		QIYES QINO	
HAS THE SPILL ENTERED / If YES provide details	WATER COURSE?	U TES U NO	
	·		
		10	
	summary)		
If YES see attached sample	••		
If YES see attached sample	summary) ACTED SURROUNDING VEGETA	NTION O YES O NO	
If YES see attached sample	ACTED SURROUNDING VEGETA	NTION O YES O NO	
If YES see attached sample HAVE AIR EMISSIONS IMP/ EXTENT OF AFFECTED AR	ACTED SURROUNDING VEGETA		
(If YES see attached sample HAVE AIR EMISSIONS IMP/ EXTENT OF AFFECTED AR	ACTED SURROUNDING VEGETA		
(If YES see attached sample HAVE AIR EMISSIONS IMP/ EXTENT OF AFFECTED AR	ACTED SURROUNDING VEGETA		
If YES see attached sample HAVE AIR EMISSIONS IMP/ EXTENT OF AFFECTED AR	ACTED SURROUNDING VEGETA	IONS	
If YES see attached sample HAVE AIR EMISSIONS IMP/ EXTENT OF AFFECTED AR	ACTED SURROUNDING VEGETA	IONS	CONFIDENT PET_0410

- - - - - -

· · -----

_--


-- .

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

TAGRA Limited						
anna a chaidhnana dalaidea		-				
VASTES						
WHAT TYPE OF WASTE MATE	RIALS ARE GENE	RATED ON THE SITE	?			
	DRILL MUD					
	WASTE OIL					
		MS				
		VATER				
	FILTERS	ТҮРЕ				
	USED OIL					
	SEWAGE					
	DOMESTIC	TYPE				
	GAS					
	CHEMICALS	TYPE				
	OTHER					
RE ANY OF THE ABOVE WAS	TE S DISPOSED	OF AT THE WELL SITE	E? 🗅 YES	D NO	TYPES	
	VASTES (if any) A		THE SITE			
HAVE ANY OF THE ABOVE WA	STES BEEN SPIL	LED ON THE SITE?	D YES	D NO		
AS THE SPILL BEEN CHARAC	CTERIZED ELSEV	VHERE ON THE DATA	SHEETS	O YES	O NO	
			_			

HBT AGRA Limited Engineering & Environmental Services	
PHASE I SITE	RECONNAISSANCE

PIPELINE DATA SHEET

					11/	101	24	ł
L	11	52	EC	TED	746	ハート		J

l

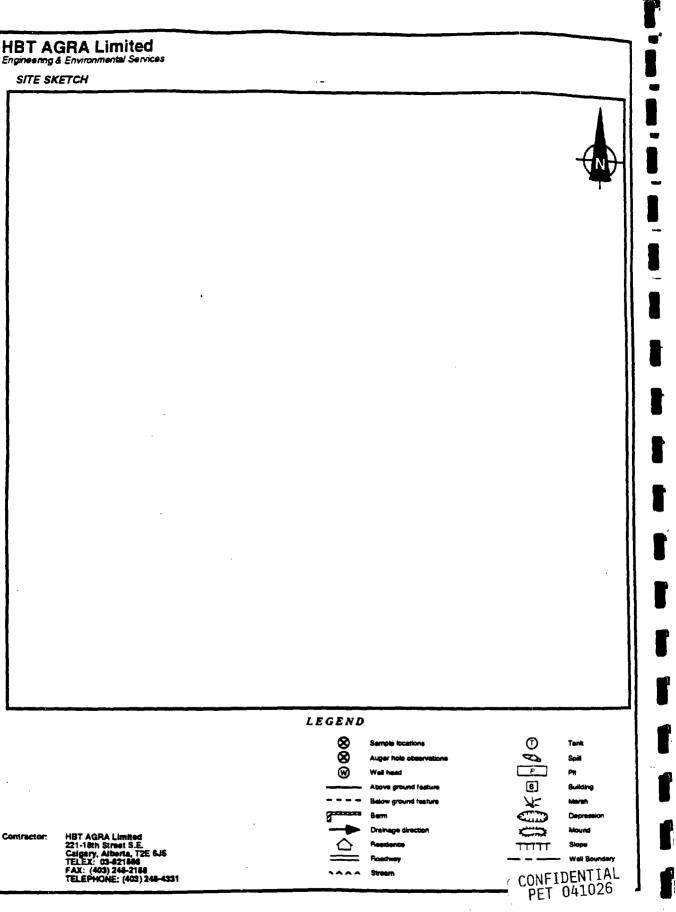
l

4

.

j

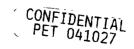
ľ


j,

ASSESSMENT DATE:

						ASSES	SMENT PERSO	NNEL:
-								
SEGMENT								
								KM
SPECIFIC LO								NM
	-							км
		TION						
PIPELINE								
					PIPELINE			
	-						OR	m
PIPELINE CO								
_ · _			IL.					
		C P	RODUCED WA	TER				
IS THE PIPEL		E OR BELOW	ROUND?	a	ABOVE			
		VISIBLE ALON						D NUMBER
SPILL DE	TAIL ·							
								`
								-
			OMENTED		TES			٩
(If YES provide	o detail)							
							· · · · · · · · · · · · · · · · · · ·	······································
ESTIMATED S	IZE OF SP	PILL	m2					
ESTIMATED C		ATED THICKN	ESS		m			HYDROCARBON
HAS THE SPIL	L AFFECT	TED AGRICULT	URAL LAND?	a	YES			ODOUR KEY None = N
HAS THE SPIL	L ENTERI	ED A WATER C	OURSE		YES			Faint = F
HAS A SAMPL	E BEEN C	BTAINED		a	YES			Distinct = D Strong = S
HAS A SKETC		EN DRAWN?		٩	YES	D NO		
							DESCRIPTIO	N
LOC	ATION	SAMPLE	INTERVAL		TE	EXTURE	HYDE	ROCARBON ODOUR
		NUMBER	FROM 1	ю				
PHOTO NUME	BER							
Roll Pho	ото				DI	ESCRIPTION		
OTHER INFOR	RMATION	AND OBSERVA	TIONS					
								·······
		· · · · · · · · · · · · · · · · · · ·					CONFID	ENTIAL -
								41025
								,

HBT	AGI	RA L	.imi	ted
Enginee	nna È E	avima	nental .	Sarvices


· · · ---- .

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

APPENDIX G

SAMPLE SUMMARY AND ANALYTICAL RESULTS

A G R A Earth & Environmental Group

CA1069774

And the second second second

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

- - -

3

,

Ì

	S	ample	Ide	ntifica	tion	Int	erval	Hydro	÷									lest	- Soll		•		Water
ł				r	r	 		carbon	Sample	Sampled	Hydro	arbone		leav	y M	otals			Other I	norgani	cs	EC	See
L	Field	Site	#	Form	Тура	(cm)	Odour	Matrix	Area	O&G	BTEX	Юрм	A	Hg	Se	Sn	S	Bromide	Cyanida	Flouride	рН	Note
											1	}	Indica	ites a	anał	yses	req	uest	ed				
	AU	24	1	2347	S	90	120	F	Red / Grey Clay	Adjacent Former Pit	1			1									
	AUS	8 G	1	2344	S			N		Background Soil	1											1	
	AUS	STN1	1	2346	S	100	120	F	Red Clay	Former Pit	s 1											1	
	AUS	1	2	2346	S	10	40	S	Red Clay	Process Area	(* ²⁰ 1												
	CN	BG	1	2344	S			N		Background Soli	1		1									1	
	CN	STN	1	2345	w				Water	Produced Water Pit													1
	CN	1	_1	2345	S	100	120	S	Red Clay	Former Pit	1		1									1	
	CN	2	1	2345	S	160	200	D	Silty Clay	Former Pit	1			·									
	CN	11	1	2345	S	0	30	D	Red Clay	Drainage Ditch	1												
	CN	12	1	2346	S			S	Sludge	Pit Sludge	1												
	CU	BG	1	2344	S			N		Background Soil	1								L				
L	cu	STN	1	2345	S	0	30	S	Sandy Gravel	Crude Tank	1												
	Cυ	STN	2	2345	S	0	25	S	Sandy Gravel	Off-Site	1												
	cu	2	1	2345	S	0	10	D	Sand / Pebbles	Well Pad												1	
1	DU	1	1	2260	S	0	10	S	Clay	Produced Water Pit	1												
	DU	1	2	2260	S	0	10	S	Burnt Clay	Flare Stack	<u> 1</u>		1									1	
	DU	1	3	2260	w				Water	Pit Water													1
	GU	8G	1	2341	S	15	25	N	Red Clay	Background Soll	1		1	1	1	1	1	1			1	1	
	GU	ST	1	2341	9	0	50	F	Clay	Pit Discharge													
	QU	ST	2	2341	S			S	Siudge	Pond / Flare Line	1												
	GU	ST	3	2341	S	0	20	S	Clay / Sand	Diesel Tank	1												
	GU	ST	4	2341	S	0	20	F	Clay	Sum p Drein	1												
	GU	ST	5	2341	w			F	Water	Produced Water Pil				$ \rightarrow $									1
	GU	ST	6	2341	S	0	20	S	Clay / Sand	Crude Tank Drain	1			$ \bot$									
	GU	1	1	2258	w			S	Water	Pit Water													1
	GU	1	2	2258	s	0	40	F	Clay	Pit Discharge]				

Ŧ

Table G – 1Phase I Sample Summary and Analytical Request

CONFIDENTIAL PET 041028

í

Sa	ample	tde	nțificat	ion	Inte	erval			an a								uest	- Soll				Wat
				···			carbon	Sample	Sampled	Hydro	arbons		leav	iy Me	itals			Other I	norgani	CS	EC	See
Field	Site		Form	Туре	(9	m)	Odour	Matrix	Area	OåG	BTEX	ЮРМ	As	Hg	Se	Sn	s	Bromide	Cyanida	Flouride	рН	No
	•									1]	Indica	tes	anah	/ses	req	ueste	əd				
AG	ST	1	2337	S≂Soil	0	20	S=Strong	Silty Clay	Flare Stack	Sec. 1												
AG	ST	2	2337	S	0	30	S	Sand	Sump Discharge	1												
AG	ST	3	2337	S	0	30	S	Sand	Crude Tank	1												
AG	ST	4	2337	S	0	30	8	Silty Clay	Produced Water Discharge													
AG	3		2337	S	0	20	S	Clay / Organica	Pit Discharge	1							_					
AG	3	2	2337	S	0	5	S	Sand	Well Pad	1												_
AG	6	1	2337	S	NA	NA	NA	NA	Pit Discharge	1											_1	
AG	8	1	2337	S	0	120	D=Distinct	Clay	Pit Discharge	1												.
AG	10	1	2337	S	0	30	D	Clay	Adjacent Pit	1					_							
AGSSF	80	1	2337	S	0	20	N=None	Silty Brown Clay	Road cut near well SSF76	1		1									1	
AT	BG	1	2259	S	0	20	N	Red Clay	Road cut near station	1											1	
AT	ST	1	2259	S	0	10	D	Sand	Process Area	1					_							
AT	ST	2	2259	S			S	Sludge	Pit Sludge	1												
AT	ST	2	2259	W=H20			D	Water	Produced Water Pit							$ \rightarrow $						
AT	ST	3	2259	S	0	10	s	• Clay	Water Discharge	1									i			
AT	1	1	2259	S	150	190	F=Faint	Clay	Former Pit	1							$ \rightarrow $					
AT	2	1	2259	S			S	Sludge	Pit	1												· '.
AT	2	2	2259	S	0	20	D	Clay	Sum p Overflow	1												
AU	19/198	1	2347	8	90	120	S	Sandy Clay	Former Pit	1			-		$ \rightarrow $		\rightarrow					
AU	BG	1	2344	S			N		Background Soil	1		1	_			$ \rightarrow $	_				_1	
AU	STN	1	2347	w				Water	Produced Water Pit				\square		-+	-+	_			[-+	
	1	1	2347	S	90	120	S	Silty Clay	Adjacent Former Pit	्ा						_						
	1	2	2347	S	90	120	F	Silty Clay	Adjacent Former Pt	<u>i (</u>				-+		-+	_					
I AU	4	1	2347	s	140	180	s	Cley / Send	Fomer Pit	1			-+		_	_	_					
<u>S AU</u>	11	1	2345	w		<u> </u>		Water	Pond / Depression	 			-+-		_ -	_ -	_					<u>1</u>
AU	17	1	2347	<u>. s</u>	70	110	<u>s</u>	Clay / Sand	Adjacent Pit	1	<u>_</u>				-							

100

Table G – 1 Phase I Sample Summary and Analytical Request

CA1069776

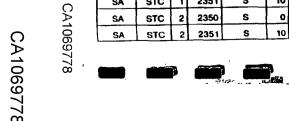

 	. ا	۵.	۰.	• •	····	** , 3	 والإنداني	iii.	 16 d	2001 53	3	;	4	** 9

Table G – 1Phase I Sample Summary and Analytical Request

ŀ	Sa	mple	lde	entifical	tion	Inte	erval	Hydro								<u> </u>		uest	- Soil				Wate
			.	T		l		carbon	Sample	Sampled	Hydro	carbons		Heav	γM	etals	S		Other	Inorgan	lcs	EC	See
Field	d	Site		Form	Туре	(6	m)	Ödönu	Matrix	Area	OåG	BTEX	ICPM	Â	Hg	Se	Şn	s	Bromid	Cyanida	Flouride	рΗ	Not
	_	_]	Indic	ates	ana	lyse:	s req	uest	ted				
GU	,	3	1	2258	S	0	100	N	Clay	Off-Site Stream	1												
GU	,	3	2	2258	S	0	30	D	Silt / Sand	Dumped Soil	1		1		1							1	
GU	,	5	1	2258	S	0	20	S	Clay	Pump / Off-Site	1									1			
GU	ı [5	2	2258	S	0	100	N	Burnt Clay	Flare Stack						[
GU	,	8	1	2258	S	0	20	S	Clay	Drainage Ditch	1												
QU	,	8	2	2258	S	0	20	F	Clay	Off-Site	1												
4		11B	1	2256	S	0	20	F	Sand	Well Pad	1												
		FL17	1	2257	S			S	Sludge	Creek Below Flowline	1												
4		STC	1	2257	S	0	5	F	Send	Crude Tank	1												
	4	STC	2	2257	S	0	5	N	Sand / Tar	Fuel Tanke	1			L									
<u> </u>		STC	3	2257	S	0	20	D	Sand	Process Area	1										1		
<u> </u>	4	STC	4	2257	w			D	Water	Waste Pit	L	<u> </u>											
<u> </u>	4	STC	5	2258	S	0	5	F	Sand / Gravel	Diesel Tank		I	ļ	<u> </u>					Ļ		· ·		
L IN	$ \downarrow $	STC	6	2258	S	20	40	D	Sand	Crude Tank	1	· · ·	ļ						Ļ				
	4	STC	7	2258	S	0	5	F	Sand / Silt	Crude Tank	1	ļ	· ·	ļ		L				ļ			·
	4	STC	8	2258	W			S	Water	Produced Water Pit	-		ļ	<u> </u>		 	ļ						
<u> </u>	4	STC	9	2260	S			S	Sludge	Produced Water Pit	1	 	1	1	1	1	1	!		! !	1	1	
<u> </u>		STN	1	2257	S	0	20	F	Sand / Tar	Crude Tank	1	1							 	_	1		
<u> </u>		STN	2		<u> </u>			<u> </u>	Sludge	Pit	1	1980 <mark>, 1</mark>	1.1		 				 		ł		
		STN	2	2257	<u>w</u>			<u> </u>	Water	Produced Water Pit	177.73.53									<u> </u>	├ ───-		
		STN	3		S	0	20	S	Sitty Clay	Pit Discharge	1									 	├		
<u>, n</u>	4	1	1	2256	8	0	30	F	Silty Clay	Pump													
		5		2256	S	0		<u> </u>	Sand / Gravel	Weil Pad	1									 			
		10	+	2256	S	0	30	D	Silty Sand	Flowline	1									<u> </u>	 		
- <u>LA</u>	$ \downarrow $	10	2	2256	<u>s</u>	20	50	N	Sandy Clay	Well Pad - Background		 	 										
Ĺ		12	Ľ	2256	S	0	30	F	Sandy Silt	Well Pad		L	L										

S	ample	lde	ntificat	ion	Inte	ərval	Hydro		· · ·				A	naly	tical	Req	ues	- So	H			Water
					ļ		carbon	Sample	Sampled	Hydro	carboni		Hea	vy M	etals			Othe	Inorgani	cs	EC	See
Field	Site	#	Form	Тура	(0	m)	Odour	Matrix	Area	O&G	втех	ICPM	A 9	Hg	Se	Sn	s	Bromi	te Cyanida	Flouride	рН	Note
	NFIDE	EN1 410	IAL)31	•]	Indic	ates	ana	lyses	req	uest	ed				
LA	21	1	2256	<u>s</u>	0	20	S	Sandy Gravel	Well Pad - Flowline	1												
LA	26	1	2256	S	0	20	N	Silty Clay	Off-Site	1				ŀ								
LA	26	2	2256	S	0	20	N	Silty Clay	Off-Site	1												
ы	26	з	2256	S	0	15	S	Sandy Clay	Well Pad - Flowline	1												
LA	29	1	2256	S	O	20	D	Sandy Silt	Flowline	1												
LA	29	2	2256	S	10	20	D	Sandy Silt	Well Pad	1		1									1	
LA	34	1	2257	S	0	20	D	Silty Clay	Well Pad	1												
LA	35	1	2257	S	70	100	N	Sandy Silt	Well Pad - Flowline	1												•
PH	BG	1	2260	S	15	25	N	Red Clay	Road cut near station	1											1	
PH	ST	1	2259	S	0	20	S	Clay	Produced Water Discharge	1.												
PH	ST	2	2259	S	0	20	8	Clay	Flare Line	1												
PH	ST	3	2259	8	0	50	F	Mud - Bentonite	Drill Mud Discharge	1		1	1	1	1	1	1		1 1	1	1	
PH	ST	4	2259	S	0	30	D	Sand	Crude Tank	1		-										
PH	2	1	2259	S	0	10	D	Sand	Well Pad	1												
PH	2	2	2260	S	0	20	8	Sandy Clay	Off-Site	- 19 - 19 - -											1	
PH	5	1	2260	S	0	20	S	Sand	Off-Site Spill	1												
RM	BG	1	2344	S			N		Background Soil	1		. 1									1	
RM	1	1	2347	S	0	15	D	Sandy Gravel	Well Pad	1												
RM	1	2	2345	w				Water	Pit Water												1	1
SA	BG	Sa	2343	S			N	Sand	Road cut near well SA27			1									1	
SA	BG	1	2344	s			N		Background Soll	1		1									1	
SA	BG	2	2350	S			N		Background Soil	1		1									1	
SA	FLB4	1	2342	S	NA	NA	NA	NA	Below Pipeline	1												
SA	STC	1	2351	S	10	30	S	Slity Clay	Crude Tank / Flare Line	1												
SA	STC	2	2350	S	0	20	S	Clay	Site Drainage	1	1	1	1	1	1	1	1	1	1	!	1	/
SA	STC	2	2351	s	10	30	s	Silty Clay	Grude Tank Drain	1									LL		1]

Table G - 1 Phase I Sample Summary and Analytical Request

								Pha	se I Sampl	Table G - 1 e Summary and Ar	alytic	al Re	eque	st									
ſ	S	ample	Ide	ntificat	ion	Int	erval	Hydro				• •	÷	A	nalvi	ical	Rea	uest	– Soll				Water
L				- 442 4.4.5. 	· * ;		•	carbon	Sample	Sampled	Hydro	arbons			Y M					norgan	lcs	EC	See
	Field	Site		Form	Туре	1 (Ħn)	Odour	Matrix	Area	O&G	втех	ЮРМ	Ae	Hg	Se	Sn	s	Bromide	Cyanid	Flour	ide pł	Note
_						1					1]	Indica	ates	anal	yses	s req	uest					<u> </u>
	SA	STC	3	2351	S	0	100	D	Clay	Adjacent Pit	1												
	SA	STC	4	2350	S	0	20	S	Silty Clay	Diesel Tank Drain / Site Drain													
	SA	STN1	1	2351	8	150	200	D	Sandy Silt	Process Area	1		1										1
	SA	STN1	2	2351	S	10	30	S	Sand / Clay	Diese! Tank													
L	SA	STNI	3	2351	S	0	20	S	Clay / Sludge	Water Discharge Area	1]					
L	SA	STN1	4	2350	S	0	20	5	Silty Clay	Process Area Drain	. 1							[
L	SA	STN2	1	2350	S	100	200	D	Sand	Crude Tank	1												
	SA	STN2	2	2350	S			S	Sediment/Sludge	Water/Waste Discharge Area	1	1	1	1	1	1	1	1	,			1	1
L	SA	STS	1	2351	8	0	20	S	Clay	Tank Drainage Ditch	1												
	SA	STS	2	2351	S	0	30	S	Sand / Clay	Crude Tank	1									ļ			I
	SA	STS	3	2351	8	ŀ		S	Sediment	Water/Waste Discharge Area	1									<u> </u>			<u>ul</u>
	SA	WWB	1	2350	<u>s</u>	0	30	S	Silty Clay	Adjacent Pit	201												1
	SA	1	2	2342	S	0	20	D	Sand	Site Drain age	<u> </u>									L			
	SA	8	1	2346	S	70	120	D	Brown Clay	Adjacent Former Pit													1
L	SA	9	1	2343	S	0	20	D	Sitty Sand	Site Drainage	1												
	SA	12	1	2346	S	70	120	D	Brown Clay	Former Pit	1											·	·
	SA	16	1	2346	<u> </u>	0	60	S	Sandy Brown Clay	Adjacent Former Pit	1												
	SA	20	1	2343	8	0	20	F	Sitty Clay	Weil Pad	1												
	SA	21	1	2346	S	0	120	S	Brown Clay	Drained Pit	ें 1												
8	SA	25	1	2343	S	0	30	D	Clay	Well Pad	1								[
CONF	SA	25	2	2343	S	0	20	D	Clay	Adjacent Pit	1												
U	SA	27	1	2342	S	0	30	S	Sandy Clay	Well Pad	1								[
IDENTI/	SA	28	1	2342	S	0	30	D	Clay	Off-Site Depression				_									<u> </u>
	SA	34	1	2343	S	0	20	S	Sitty Clay	Meter Station	1										L		
Ρ.	SA	35	1	2342	S	50	60	F	Sand	Well Pad	1												
_	SA	36	1	2343	S	20	30	S	Sandy Organics	Flowline	1										[<u> </u>

1

÷

• . •

1

18.000

Ŧ.,

CA1069779

CA1069779

S	ample	lde	ntificat	ion	Int	erval	Hydro					<u>(</u>					uest	- Soll				Wa
				<u> </u>	+		carbon	Sample	Sampled	Hydroc	arbona	H	eav	y Me	stals			Other	Inorgan		EC	Se
Field	Site	#	Form	Туре	. (om)	Odour	Matrix	Area	080	BTEX	ЮРМ	As	Hg	Şe	Śn	S	Bromid	Cyanid	e Flouri	⊮ d •t	I No
										1		Indica	tes	anal	yses	s req	uest	ed				_
SÁ	STC	3	2351	5	0	100	D	Clay	Adjacent Pit								<u> </u>		1	T		
SA	STC	4	2350	8	0	1	S	Silty Clay	Diesel Tank Drain / Site Drain	1										1	1	\uparrow
SA	STN1	1	2351	S	150	200	D	Sandy Silt	Process Area	1		1								1	,	1
SA	STN1	2	2351	S	10	30	S	Sand / Clay	Dieset Tank										1	1		
SA	STN1	3	2351	S	0	20	S	Clay / Sludge	Water Discharge Area	1												T
SA	STN1	4	2350	S	0	20	S	Silty Clay	Process Area Drain	1										1		T
SA	STN2	1	2350	S	100	200	D	Sand	Crude Tank	1										Ι		
SA	STN2	2	2350	8			S	Sediment/Sludge	Water/Waste Discharge Area	1	1	1	1	1	1	1	1	1			1 1	
SA	STS	1	2351	8	0	20	S	Clay	Tank Drainage Ditch	1												
SA	STS	2	2351	9	0	30	S	Sand / Clay	Crude Tank	1												
SA	STS	3	2351	8			S	Sediment	Water/Waste Discharge Area	1											<u> </u>	J
SA	WWB	1	2350	S	0	30	S	Silty Clay	Adjacent Pit	1												
SA	1	2	2342	S	0	20	D	Sand	Site Drainage	<u> 1</u>												
SA	8	1	2346	S	70	120	D	Brown Clay	Adjacent Former Pit	1										<u> </u>		
SA	9	_1	2343	S		20	D	Silty Sand	Site Drainage	<u></u> 1					····							
SA	12	1	2346	S	70	120	D	Brown Clay	Former Pit	1									ļ	ļ	<u> 1</u>	↓
SA	16	1	2346	S	0	60	S	Sandy Brown Clay	Adjacent Former Pit	1												<u> </u>
SA	20	1	2343	8	0	20	F	Silty Clay	Well Pad	1												_
SA	21	1	2346	S	0	120	S	Brown Clay	Drained Pit	<u> </u>										<u> </u>		1
SA	25	1	2343	<u> </u>	0	30	D	Clay	Well Pad	1										ļ		1
SA	25	2	2343	S	0	20	D	Clay	Adjacent Pit	1									ļ			<u> </u>
SA	27	1	2342	S	0	30	S	Sandy Clay	Well Pad	. 1												
SA	28	_1	2342	S	0	30	D	Clay	Off-Site Depression			┝──╂	_									
SA	34	1	2343	S	0		S	Silty Clay	Meter Station			┝───╂-		-+							<u> </u>	
SA	35	_1	2342	S	50	60	F	Sand	Well Pad			┝╼╾┨╴						= = . =			_	
SA	36	_1	2343	S	20	30	S	Sandy Organics	Flowline	1			_								<u> </u>	

Table G - 1

.

. سک

34

...

а.

•

CA1069780

CA1069780

¥

.

<u>یت د</u>

.

Ì.

|

1

32

S	ample	Ide	ntificat	ion	Inte	erval	Hydro-						A	nalyti	cal I	Requ	ie st	- Soi	I j			w
		r—					carbon	Sample	Sampled	Hydroc	arbons		leav	y Me	tals			Other	Inorge	inics	EC	s
Field	Site	#	Forn	Тура	(0	:m)	Odour	Matrix	Area	OAG	BTEX	ЮРМ	As	Hg	Se	Sn	S	Bromid	e Cyan	ide Flourid	ь рн	N
												Indica	ites	analy	ses	requ	lest	ed				
SA	36	2	2343	S	20	30	D	Sand	Chemical Tanka		1				Т	T			T	1	Τ	
SA	36	3	2343	S	0	20	S	Sand	Dieset Tank	1												
SA	43	1	2343	S	60	70	S	Sand	Former Pit	1												
SA	48	1	2343	S	60	70	F	Clay	Suspect Pit	1												
SA	72	1	2350	S	50	70	D	Clay	Pit	1												
SA	74	1	2346	S	80	120	D	Brown Clay	Pit Discharge	1												
SA	77	1	2344	S	0	40	N	Brown Clay	Barren Area													
SA	78	1	2342	S	0	30	F	Clay	Plt Discharge	1												
SA	86	1	2342	S .	NA	NA	NA	NA	Site Drainage	1												
SA	93	1	2350	S	0	50	F	Clay	Pit Discharge													
SA	93	2	2350	S	0	20	S	Ciay	Drainage Ditch	1												
SA	94	1	2342	S	0	30	D	Cley	Ptt	1												
SA	94	2	2342	w			S	Water	Pit Water													
SA	94	3	2342	S			S	Sludge	Ph	<u></u> 1							_			_		
SA	97	1	2342	S	0	20	D	Clay / Organics	Off-Site / Meter	1												
SA	100	1	2343	S	0	20	S	Clay	Former Pit													
SA	109	1	2346	S	80	100	S	Brown Clay	Adjacent Pit	1									<u> </u>			L
SSF	A1	1	2338	S	10	30	D	Clay	Suspect Pit	1									· .			
SSF	A24	1	2330	S	90	10	F	Clay	Adjacent Pit	1		-	-									
SSF	A43	1	233 9	S	80	100	S	Clay	Adjacent Pit	3 1	_											
SSF	A43	2	2339	S	0	50	D	Clay	Former Pit													
Sssf	A45B	1	2330	S	60	70	S	Clay / Organics	Pit Discharge	1	_											
	A68	1	2330	S	90	100	F	Silty Clay	Near Stream	1												
	A68	2	2330	S	60	70	D	Sitty Clay	Former Pit	1			_		_ -	\bot	_			<u> </u>		_
SSF	A68	3	2330	S	20	30	F	Silty Clay	Former Pit	1			\rightarrow				_					
	B31	1	2330	s	0	45	s	'Silt / Clay	Filter Dump Pit	1		1	1	1	1	1	<u>_1</u>	1	1	<u> </u>	1	

i

:

:

. . 1

Ţ

	S	ample	lde	ntificat	ion	Inte	erval	Hydro-									Requ		- Soil				W
H	-		<u> </u>					carbon	Sample	Sampled	Hydro	arbons			<u>y M</u> e	tals			Other I	norgan	<u>cs</u>	EC	
L	Field	Site		Form	Тура	(0	:m)	Odour	Matrix	Area	080	BTEX	ЮРМ	As	Hg	Se	Sn	S	Bromide	Cyanida	Flouride	pН	1
-										•	1]	Indica	tes a	analy	/ses	requ	Jesti	ed				
	SSF	B 36		2983	S	0		D	Clay	Former Pit	1	ļ	L										
	SSF	B 36	2	2339	S	0	20	F	Sand	Filter / Waste Pit	1	ļ	L										
	SSF	862	1	2330	S	0	10	F	Silty Sand	Flowline	1												┡
	SSF	857	1	2340	S	50	100	S	Silty Clay	Adjacent Pit	1		┟───┟									ļ	\vdash
	SSF	859	1	2330	S	0	20	D	Clay	Pit Discharge	1		┨	_	_						<u> </u>		_
	88F	B63	1	2330		0	50	8	Clay	Ptt	1							<u> </u>			_	<u> </u>	L
\downarrow	SSF	B64	-1	2339	<u> </u>	50	60	<u> </u>	Ctay	Former Pit	1	<u> </u>										1	┢
\vdash	SSF	B66	1	2339	<u>S</u>	0	50	<u> </u>	Clay	Pit Discharge	¹		1	!	1	1	1	1	1	1	<u> </u> '	1	 .
+	SSF	FL13	8 G	2330	S		20	S	Clay	Background - 1.4 lm	¹	 									┨─────	1	-
┝	SSF	FLA6	-1	2330	<u>s</u>								╞──┨								┨────	—	┢
┢	SSF	SP1		2330	<u>s</u>	0	20	D	Clay	Below Pipeline Valve	. 1		┠┟			-+					 		
┢	SSF	SP1	2	2338	8	0	20	D	Clay	Below Pipeline			<u>ः</u> 1				_				}		┢─
┟	SSF	STC		2338	<u>S</u>	180	200	D	Sity Clay	Adjacent Pit	963. 1325 :		····	-							 		┝
$\left \right $	8SF SSF	STC STC	2	2338 2339	<u> </u>	90	100	F F	Clay	Crude Tank Crude Tank						-					{		┢╌
┢	SSF	STC	3	2339		90	20 100	г D	Clay Clay	Fuel Tanks			┟╼╾╁								┟───┤		
┢	SSF	STC	5	2339	 S	60	70	D	Silty Clay	Diesel Tank			{								{{		
ŀ	SSF	STN	-	2338	<u> </u>	0	20	 D	Silty Clay	Adjacent Depression											<u> </u>		
	SSF	STN	2	2338	S	ō	20	U	Brown Clay	Pit Discharge			┝╼╼╁	-1	\neg						<u> </u>		
ιŚ	SSF	STN	3	2338	s	0	20	9	Clay	Off-Site Discharge			┝──╀		-	-+							
		STN	I d	2338	S	0	20	ŝ	Sand	Tank Area Drain				-†									-
E	SSF	STS		2338	 S	10	30	F	Clay	Discharge Channel	1				-+		-1	-1					_
Ľ	SSF SSF SSF	STS	2	2338	s	0	30	D	Sand / Clay / Grav	Crude Tank					-+					-			
Η	SSF	STS	3	2338	s	Ō	30	S	Sand / Clay	Diesel Tank		1		-†									
	SSF	STS	4	2351		0	20	S	Silt	Waste Pit Sludge near SSF23	1	1	1	7	1	1	1	1	1	1	1	1	
Г	SSF	STSW		2339	S	0	50	S	Sandy Clay	Crude Tank Drain													

Table G - 1Phase I Sample Summary and Analytical Request

. سند م

•.

Engineering & Environmental Services

Methodologies, Method Detection Limits (MDL) and description

Temperature (EPA 170.1)

Temperature measurements were made with a mercury-filled centigrade thermometer.

pH (EPA 150.1)

The pH of a sample is determined electrometrically using a combination electrode.

Specific Conductance (Conductivity) (EPA 120.1)

The specific conductance of a sample is measured by use of a self-contained Wheatstone bridge type meter (YSI Model 34). Samples are preferably analyzed at 25°C. If not, temperature corrections are made and results are reported at 25°C.

Turbidity (EPA 180.1)

The method is based upon a comparison of the intensity of light scattered by a sample under defined conditions with the intensity of light scattered by a reference suspension in a spectrophotometer at 540 nm. Readings are reported in NTU units.

Calcium (Dissolved) (EPA 215.1, MDL 0.1 mg/L)

Sample is filtered through 0.45 μ m membrane filter and acidified with 1:1 nitric acid to a pH of <2. Filtered, acidified sample mixed with lanthanum chloride solution and analyzed by atomic absorption spectrophotometer at 422.7 nm.

Magnesium (Dissolved) (EPA 242.1, MDL 0.1 mg/L)

Sample is filtered through 0.45 μ m membrane filter and acidified with 1:1 nitric acid to a pH of <2. Filtered, acidified sample analyzed by atomic absorption spectrophotometer at 285.2 nm.

Potassium (Dissolved) EPA 258.1, MDL 0.1 mg/L)

Sample is filtered through 0.45 μ m membrane filter and acidified with 1:1 nitric acid to a pH of <2. Filtered, acidified sample analyzed by atomic absorption spectrophotometer at 265.9 nm.

Sodium (Dissolved) (EPA 273.1, MDL 0.1 mg/L)

Sample is filtered through 0.45 μ m membrane filter and acidified with 1:1 nitric acid to a pH of <2. Filtered, acidified sample analyzed by atomic absorption spectrophotometer at 589.6 nm.

¹¹ All Samples Will Be Disposed After 30 Days Following Analysis, Please Contact The Lap II You Require Additional Sample Storage Time. (Sumples Deemed Hazardous Will Be Returned To The Client At Their CAn Espense Or Disposal Will Be Analoged).

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Engineering & Environmental Services

TECHNICAL REPORT

Iron (Total) (EPA 236.2, MDL 1 mg/L)

Unfiltered water sample digested vigourously with conc. HNO₃ Filtered, acidified sample analyzed by atomic absorption spectrophotometer at 248.3 nm.

Manganese (Dissolved) (EPA 243.1, MDL 0.1 mg/L)

Sample is filtered through 0.45 μ m membrane filter and acidified with 1:1 nitric acid to a pH of <2. Filtered, acidified sample analyzed by atomic absorption spectrophotometer at 279.5 nm.

Chloride, Nitrate, Nitrite, Sulphate (EPA 300, MDL 0.1, 0.05, 0.05, 0.01 mg/L, respectively)

The method is based on the separation of these anions on an analytical ion exchange column using high performance liquid chromatograph. Detection of the anions in the mobile phase with an electrochemical detector. The chromatogram is plotted on a printer/plotter and areas are determined electronically and compared to standards.

Chloride (Brine waters) (APHA 4500-Cl⁻ D)

Chloride is determined by potentiomentric titration with ion selective electrode solution.

Bicarbonate/Carbonate (EPA 310.1, MDL 1 mg/L)

Bicarbonate and/or carbonate is determined in water samples from the appropriate alkalinity relationship using phenolphthalein and total alkalinity concentrations.

Alkalinity (EPA 310.1, MDL 1 mg/L)

An unfiltered sample is titrated to an electrometrically determined end point of pH 4.5 and 8.3. The sample must not be filtered, diluted, concentrated or altered in any way.

Hardness (EPA 130.2, MDL 6 mg/L)

Hardness is obtained by calculation based on the calcium and magnesium ions concentration in the sample.

 $Hardness (mg/L) = (Ca (mg/L) \times 2.497) + (Mg (mg/L) \times 4.118)$

Total Dissolved Solids Filterable (1.8 µm, 0.45 µm) (EPA 160.1, MDL 2 mg/L)

A well-mixed sample is filtered through a standard glass fibre filter (1.5 µm, 0.45 µm). The filtrate is evaporated and dried to a constant weight at 180°C.

** All Samples Will Be Disposed After 30 Days Following Analysis: Please Contact The Lab II You Require Additional Sample Storage Time: "Samples Deemic Hatardous Ville Be Returned To The Client At Their Own Expense Of Disposed Will Be Arranged."

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069784

PET 041037

Engineering & Environmental Services

Total Suspended Solid (Residue, Non-Filtrable) (EPA 160.2, MDL 2 mg/L)

A well-mixed sample is filtered through a glass fibre filter (1.5 μ m), and the residue retained on the filter is dried to a constant weight at 103-105°C.

Total Petroleum Hydrocarbons, Total Recoverable (EPA 418, MDL 0.2 mg/L)

The sample is acidified to pH < 2 and serially extracted with fluorocarbon-113 in a separatory funnel. The solvent is evaporated from the extract and the residue weighed. Interferences are removed with silica gel absorbent. Infrared analysis of the extract is performed by direct comparison with standards.

Color (APHA 2120B, MDL 1 mg/L)

True Color is determined by visual comparison of the sample with known concentrations of colored solutions. The colored solutions are prepared with varying ratios of chloroplatinate and cobaltous chloride. Values were reported in True Color Units.

Sulphite (EPA 376.1, MDL 0.2 mg/L)

A sample is acified with sulfuric acid and titrated with a standardized potassium iodide-iodate solution in the presence of a starch indicator.

Phosphorus, Total (EPA 365.2, MDL 0.01 mg/L)

Ammonium molybdate and stannous chloride react in an acid medium with dilute solutions of phosphorus. Molybdophosphoric acid is formed and reduced by stannous chloride to form molybdenum blue which is read at 690 nm in a spectrophotometer. The color is proportional to the phosphorus concentration.

Only orthophosphate forms a blue color in this test. Polyphosphates (and some organic phosphorus compounds) may be converted to the orthophosphate form by sulphuric acid hydrolysis. Organic phosphorus compounds may be converted to the orthophosphate form by persulphate digestion.

APHA Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 17th ed. 1991.

EPA, 1983. Methods for Chemical Analysis of Water and Wastes. United States Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinati, OH 45268.

** All Samples Will Be Disposed After 30 Days Following Analysis. Please Contact The Lab II You Require Additional Sample Storage Time. "Samples Deemed Hazardous Will Be Returned To The Client At Their Divin Expense O: Disposal Will Be Arranged). **

CONFIDENTIAL PET 041038

AGRA Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Engineering & Environmental Services Soil 4810 - 93 Street Edmontor Alberta T6E 5M4 Tel (403) 436-2152 Fax (403) 435-8425

Methodologies, Method Detection Limits (MDL) and description

Total Petroleum hydrocarbons by IR (EPA 413.2, MDL 20 µ g/g)

Wet soil samples are extracted with Freon (1,1,1,-trichloro, 2,2,2-trifluoroethane), dried over sodium sulphate. A single wavelength infrared spectrometer is used to determined the concentration of petroleum hydrocarbons in soil samples. A mixture of hydrocarbons is used as calibration standard.

BTEX (EPA 5030/8020, MDL 0.005 μg/g)

Benzene, toluene, ethylbenzene, and xylenes (BTEX) are liberated from the soil samples in aqueous media using an automated headspace autosampler and a gas chromatograph equipped with a capillary column and a photoionization detector (PID). The organics are volatilized into a capillary column for separation and quantified using the PID.

Metals Sample preparation (EPA 3050)

A representative soil sample (1-2 g, wet weight) is digested in nitric acid and hydrogen peroxide. The digestate is then refluxed with either nitric acid or hydrochloric acid for ICP or AAS, respectively.

ICP (APHA)

Soil extracts are analyzed for metals by ICP.

Arsenic (EPA 7061, MDL 0.003 µg/g)

Samples are digested with nitric/sulphuric acid. Next, the arsenic in the digestate is converted to a gaseous hydride with sodium borohydride and is swept into an argon-hydrogen flame located in the optical path.

Antimony (EPA 7741 MDL 0.003 μg/g)

Samples are prepared according to the nitric/sulphuric acid digestion procedure. Antimony in the digestate is reduced with sodium borohydride and the volatile hydride is swept into a argon-hydrogen flame located in the optical path of an AAS.

CONFIDENTIAL PET

Earth & Environmental Group

CA1069786

Engineering & Environmental Services Mercury (EPA 7471 MDL 0.003 µg/g)

3

3

4

1

i.

ł

3

4810 - 93 Street Ecmonton Alberta T6E 5M4 Te! (403) 436-2152 Fax (403) 435-8425

Samples are digested with aqua regia to reduce mercery to the elemental state. The extract is aerated from solution in a closed system. The mercury vapor passes through a cell positioned in the light path of a flameless AAS.

Selenium (EPA 7741 MDL 0.003 µg/g)

Samples are prepared according to the nitric/sulphuric acid digestion procedure. Selenium in the digestate is reduced with sodium borohydride to a volatile hydride and is swept into a argon-hydrogen flame located in the optical path of an AAS.

Sulfur (EPA 9010, MDL 20 µg/g)

Dried and ground sample digested in the microwave followed by analysis using ICP.

Bromide (Soluble) (APHA 4110B, MDL 8 µg/g)

Dried and ground sample digested (boiled for one hour with distilled water) following analysis using Ion Chromatography.

Cyanide (Total) (EPA 9012, MDL 0.025 µg/g)

Dried and ground sample distilled and analyzed colorimetrically using isonicotinic acid and barbutric acid.

Fluoride (Total) (APHA 4500, MDL 10 µg/g)

Dried and ground sample fused with a mixture of sodium carbonate and potassium carbonate followed by analysis using the TISAB method and fluoride electrode.

Soluble salts in 1:2 soil:water mixtures (McKeague 3.22)

200 mL of distilled water is added to 100 g of air dried soil. The mixture is shaken on a mechanical shaker for one hour. Cations and anions are analyzed by AAS and ion exchange chromatography, respectively.

Moisture Content (McKeague 2.411)

A moist soil sample, 10 g or more, is weighed and air dried at 105°C to a constant weight. The percentage water by weight is calculated as follow:

CONFIDENTIAL PET 041040

CA1069787

Engineering & Environmental Services

4810 - 93 Street Edmonton, Alberta T6E 5M4 Tel (403) 436-2152 Fax (403) 435-8425

Saturated Paste

$$P_{w} = 100 X \left[\frac{Weight of moist soil}{Weight of oven-dry soil} -1 \right]$$

Soil Moisture Content

$$P_{w} = 100 X \left[\frac{Weight of moist soil - Weight of oven dry soil}{Weight of oven dry soil} \right]$$

pH/Conductivity in 1:2 soil:water mixtures (McKeague 4.12)

A 15 g soil sample is mechanically shaken for 30 minutes with 30 mL distilled water. The pH and conductivity of the suspension is measured with either a pH strip or pH electrode and conductivity meter.

References

- EPA, 1986. SW-846 Third Edition. Test Methods for Evaluating Solid Waste. United States Environmental Protection Agency. Office of Solid Waste and Emergency Response, Washington, DC 20460
- McKeague, J.A. 1978. Manual on Soil Sampling and Methods of Analysis, Can. Soil Sci. Ottawa.

CONFIDENTIAL PET 041041 AGRA

Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

1 .0

HBT AGRA Limited

Analytical Chemistry Laboratory WATER QUALITY CONTROL STANDARD PRELIMINARY RESULTS

File# EC17086/17118

	ANALYTICAL			1	Analyzed	Analyzed	Analyzed	Analyzed	Advisory	Certified	ERA
	PARAMETERS		A 1977 A								-
Date	PARAME I ERS		Арна		Value	Value	Value	Value	Range	Value	lot no.
		Units	Method	MDL	Run 1	🐘 Run 2	Run 3	Run 4			<u> </u>
	Calcium	mg/L	3500Ca-b	<0.1	81.4	<u>79.7</u>	82.2	81	71-95	83	9943
7-Jul	Calcium	mg/L	3500Ca-b	<0.1	85.0	82.5	80.3		71-93	82	9947
25-Jun	Magnesium	mg/L	3500Mg-b	<0.1	9.8	9.9			9.0-13	10.0	9943
6-Jul	Magnesium	mg/L	3500Mg-b	<0.1	10.9	11.0	11.0	9.6	9.0-13	10	9943
24-Jun	Potassium	mg/L	3500К-ь	<0.1	180				157-212	184	9945
Jun 24-Jul 6	Potassium	mg/L	3500К-ь	<0.1	200	218	206	211	175-237	208	9948
26-Jun	Sodium	mg/L	3500Na-b	<0.1	210	216			174-235	204	9945
26-Jun	Sodium	mg/L	3500Na-b	<0.1	276	274	280		222-300	261	9948
15-Jul	Sodium	mg/L	3500Na-b	<0.1	260	257			222-300	261	9948
26-Jun	Iron	mg/L	3500Fe-b	<0.05	0.515	0.511	0.531	0.519	0.430-0.620	0.525	9946
5-Jul	kon	mg/L	3500Fe-b	<0.05	0.514	0.550	0.553		0.430-0.620	0.525	9948
26-Jun	Manganese	mg/L	3500Mn-b	<0.05	0.103	0.106	0.110	0.106	0.063-0.119	0.101	9946
5-Jul	Manganese	mg/L	3500Mn-b	<0.05	0.106	0.110	0.101		0.063-0.119	0.101	9946
16-Jul	Chloride	mg/L	4500CI-b	<1	100				96-112	105	9949
Jun 25-29	Chloride	mg/L	4500CI-f	≪0.1	102	107	107	104	96-112	105	9949
Jul 6-12	Chloride	mg/L	4500CH	≪0.1	108	106	104	102	98-112	105	9949
Jun 25-29	Sulphate	mg/L	4500\$O4-b	≪0.1	284	303	301	297	251-333	292	9949
Jul 6-12	Sulphate	mg/L	4500SO4-b	<0.1	304	296	296	293	251-333	292	9949
25-Jun	Conductivity @ 26°C	mS/cm	2510		1.453				1.250-1.690	1.470	9949
5-Jul	Conductivity @ 26°C	mS/cm	2510		1.516	1.510	1.514	1.510	1.250-1.690	1.470	9949
25-Jun	pH @ 25*C		4500H		9.13				8.9-9.3	9.1	9949
5-Jul	pH @ 26*C		4500H		9.05	9.07	9.09	9.15	8.9-9.3	9.1	9949
11-Jul	Phosphorus-total as P	mg/L	4500P-d	⊲0.01	4.29	4.19			3.5-4.8	4.16	9943
11-Jul	Phosphorus- total as P	mg/L	4500P-d	≪0.01	6.63				5.2-6.9	6.04	9947
Jun 25-Jul 5	Total Alkalinity (as CaCO3)	mg/L	2320	<1	173	182	181	179	158-196	177	9949
25-Jun	Total Hardness (as CaCO3) (calc)	mg/L	2340-ь	<6	244	240			211-286	248	9943
28-Jun	Total Dissolved Solids @ 180°C	mg/L	2540-c	<2	1128	1160	1160		1010-1310	1160	9949
14-Jul	Total Dissolved Solids @ 180°C	mg/L	2540-c	<2	1162	1152			1010-1310	1160	9949
18-Jul	Total Dissolved Solids @ 180°C	mg/L	2540-c	<2	1248				1150-1490	1320	9948
Jul 9-14	Total Dissolved South & Total Carbons (IR)	mg/L	2540-C 5520-f	<u></u> ⊲0.1	1400	1300	910	1000	620-1600	1380	93008 #2

* modified method

APHA - Standard methods for the Examination of Water and Wastewaters. 1989. 17th Ed. American Public Health Association.

Senior Analyst; (M) ٩Λ

Manager:

CA1069789

Analytical Chemistry Laboratory WATER QUALITY CONTROL STANDARD PRELIMINARY RESULTS

File No.: <u>EC17119</u> Project No.: <u>Ecuador</u>

	ANALYTICAL		Арна			Analyze	d Value		Advisory	Certified	ERA
Date	PARAMETERS	Units	Method	MDL	Ren 1	Run 2	Run 3	Ron 4	Range	Value	Lot no.
18-Jul	Calcium	mg/L	3500Ca-b	<1	81.0	79.0	83.1	83.1	71-93	82.0	9947
18-Jul	Magneskim	mg/L	3500Mg-b	4	19.7	19.8	20.0		17-23	19.8	9947
10-Jul	Potasskum	mg/L	3500K-b	<1	218	212	212		175-237	206	9948
14-Jul	Sodium	mg/L	3500Na-b	<1	263	256	254		222-300	261	9948
13-Jul	Iron	mg/L	3500Fe-b	≪0.05	0.500	0.527	0.546	0.526	0.430-0.620	0.525	9946
14-Jul	Manganese	mg/L	3500Mn-b	<0.05	0.103	0.098			0.063-0.119	0.101	9946
Jul 6-12		mg/L	4500CH	≪0.1	108	108	104	102	96-112	105	9949
	Suiphate	mg/L	4500804-6	≪0.1	304	296	298	293	251-333	292	9940
5-Jul	Conductivity @ 25°C	mS/cm	2510	-	1.516	1.51	1.514	1.51	1.250-1.690	1.47	9949
5-Jul	pH @ 28°C	-	4500H	-	9.05	9.07	9.09	9.15	8.9-9.3	9.1	9949
11-Jul	Phosphorus- total as P	mg/L	4500P-d	<0.01	4.19				3.5-4.8	4.16	9943
5-Jul	Total Alkalinity (as CaCO3)	mg/L	2320	<1	182	161	179		158-196	177	9949
	Total Hardness (as CaCO3) (calc)	mg/L	2340-ь	<	263	279	290		246-325	286	9947
14-Jul	Total Dissolved Solids @ 199*C	mg/L	2540-c	2	1162	1152			1010-1310	1160	9949
Jul 7-8	Total Petroleum Hydrocarbons (IR)	mg/L	5520-1	≪0.1	1000	1600			620-1800	1380	93008-2

* modified method

APHA - Standard methods for the Examination of Water and Wastewaters. 1989, 17th Ed. American Public Health Association.

Senior Analyst: ma CONFIDENTIAL PET 041043 a M 0CA1069790

Manager:

Analytical Chemistry Laboratory WATER QUALITY CONTROL STANDARD PRELIMINARY RESULTS

File No: <u>EC17040</u> Project No.: <u>Ecuador</u>

а

Date	ANALYTICAL PARAMETERS	Unite	Method	MDL	Ana Run	lyzed V Run	alues Run	Range	Certified Value	ERA lot no.
					<u></u>	2	3			
28-Jul	Arsenic	mg/L	EPA 3050/7061	<0.0005	0.090			0.088-0.167	0.105	9945
	Arsenic	mg/L	EPA 3050/7061	<0.0005	0.122	0.119		0.094-0.150	0.125	9946
28-Jul	Mercury	mg/L	EPA 3050/7471	<0.0005	0.0036			0.0022-0.0041	0.00325	9946
	Mercury	mg/L	EPA 3050/7471	<0.0005	0.0077			0.0036-0.0068	0.00667	9944
	Mercury	mg/L	EPA 3060/7471	<0.0005	0.013			N/A	0.017 ug/g	CANMET SO-3
27-Jul	Selenium	mg/L	EPA 3050/774	⊲0.0005	0.109	0.095	0.096	0.089-0.150	0.119	9946
30-Jul		mg/L	EPA 3050/7870	4	25.7			N/A	25.0	LAB STD
30-Jul		mg/L	EPA 3050/7870	s S	50.1			N/A	50.0	LAB STD
30-Jul	Tin	mg/L	EPA 3050/7870	4	130			N/A	100.0	LAB STD
16-Jul	Chloride	mg/L	APHA4500CI-b	<1	100			98-112	105	9949
	Chloride	mg/L	APHA 4500CH	≪0.1	104			96-112	105	9949
14-Jul		-	APHA 4500H	-	9.06			8.9-9.3	9.1	9949
11-Jul	Phosphorus- total as P	mg/L	APHA 4500P-d	<0.01	3.56			3.5-4.8	4.16	994 3
11-Jul	Phosphorus- total as P	mg/L	APHA 4500P-d	<0.01	5.68			4.5-6.1	5.33	9947
16-Jul	Total Dissolved Solids @ 180°C	mg/L	APHA 2540-c	<2	1160			1010-1310	1160	9949
Jul 6-7	Total Petroleum Hydrocarbons (IR)	mg/L	APHA 5520-f	<0.0	1000	1800		620-1780	1380	93008#2

* modified method

CONFI1

DENTIAL 041044 APHA - Standard methods for the Examination of Water and Wastewaters. 1989. 17th Ed. American Public Health Association.

EPA - U.S. Environemental Protection Agency, 1988. Test Methods for Evaluation of Solid Waste 3rd Ed. Office of Solid Waste Emergency Response, U.S.

Environmental Protection Agency, Washington, D.C.

Senior Analyst:

Jurie Ena

Manager:

Analytical Chemistry Laboratory WATER QUALITY CONTROL STANDARD SUMMARY RESULTS

12. .

File No.: EC17085 Project No.: Ecuador

1

	ANALYTICAL		Арна	Nogelsen i S Her Staff (* 1		Ana	lyzed V	lives		Advisory	Certified	ERA
Date	PARAMETERS	Uaite	Method	MDL	Run 1	Run 2	Ron 3	Run 4	Run 5	Range	Value	lot no.
18-Jul	Calcium	mg/L	3500Ce-b	<1	81.5	79.4				71-93	82.0	9947
18-Jul	Magnesium	mg/L	3500Mg-b	<1	20.3	19.7				17-23	19.8	9947
16-Jul	Polassium	mg/L	3500К-ь	<1	222	218				175-237	206	9948
14-Jul	Sodium	mg/L	3500Na-b	<1	273	267	263			222-300	261	9948
13-Jul	tron	mg/L	3500Fe-b	⊲0.05	0.526	0.535				0.430-0.620	0.525	9946
	Manganese	mg/L	3500Mn-b	<0.05	0.103	0.098				0.083-0.119	0.101	9946
Jul 13-16	Chloride	mg/L	4500CH	Q .1	104	105	106	107		96-112	105	9949
Jul 17-19		mg/L	4500CH	≪0.1	105	106	107			98-112	105	9949
Jul 13-16		mg/L	4500SO4-b	⊲0.1	266	293	302	297		251-333	292	9949
Jul 17-19	Sulphate	mg/L	4500SO4-b	<0.1	383	296	303		-	251-333	292	9949
5-Jul	Conductivity @ 25°C	mS/om	2510	8	1.516	1.51	1.514	1.51		1.250-1.690	1.47	9949
14-Jul	pH	+	4500H	-	9.15	9.12	9.15	9.16	9.10	8.9-9.3	9.1	9949
14-Jul	Total Alkalinity (as CaCO3)	mg/L	2320	<1	182	185	183	168	185	158-196	177	9949
18-Jul	Total Hardness (as CaCO3) (calc)	mg/L	2340-ь	Å	287	279				246-326	286	9947
16-Jul	Total Dissolved Solids @ 180°C	mg/L	2540-с	<2	1070	_				1010-1310	1160	9949
	Total Petroleum Hydrocarbons (IR)	mg/L	5520-1	<0.1	1100	1200				620-1800	1380	93008-2

* modified method

Senior Analyst:

APHA - Standard methods for the Examination of Water and Wastewaters. 1989. 17th Ed. American Public Health Association. CONFIDENTIAL PET 041045

Manager:

TECHNICAL REPORT

Engineering & Environmental Services

PETROECUADOR - TEXACO

Environmental Assesment

Samp Descripe	le Descr tión de l	• •				Water Analysis Analisis de Agua			
Field Campo	Site Sitio	Na. Numero	(4500H) pH @ 25°С pH a 25°С	(4500P-B/D) Phosphate Total Fosfato Total (<1 mg/L)	(4500Cl-F) Chioride Cloruro (<0.1 mg/L)	(2540-D) TSS @ 105°C SS (total) a 105°C (3 mg/L)	(2540-C) TDS @ 180°C STS a 180°C (⊲ mg/L)	(4500S-E) Sulphide Sulfuro (<0.1.mg/L)	(5520-F) TPH by IR THP por IF (<0.1 mg/L)
AT	ST	2	6.39	0.01	71,100*	3,076	140,000	0.3	12
AU .	11	1.	6.92	0.03	0.70	15	35	0.3	I.1
CN	STN	1	7.71	0.04	678*	4	1,440	<0.1	680
DU		. 3	7.57	0.05	12,700*	520	20,000	2.0	53
GU	ST	5	6.56	0.04	47,000*	2,120	81,000	1.5	4.6
GU .:	1. 1 . E	1 -	6.31	0.16	13	88	164	1.1	130
LA	STC	. 8	7.56	0.24	5,390*	1,804	10,200	3.0	91
LA	STN	2	7.46	0.24	4,440*	496	9,000	4.3	6800
RM	1	2	6.04	0.03	0.6	4	48	0.4	0.6
SA	94	. 2	6.05	0.12	5.0	76	4	2.1	34

(1) - Method: APHA; - 4500CI-B, Method Detection Limit <1

APHA - Standard method for the Examination of Water and Wastervater, 1989. 17th Ed. American Public Health Association.

TSS - Total Suspended Solids

TDS - Total Dissolved Solids

TPH - Total Petroleum Hydrocarbons

** Als Samples Will BHD socied Aner 30 Days Following Analysis: Please Contact The Lap If You Require Additional Sample Storage Time (Samples Deemed Hazardisus Will Be Returned To The Client At Thos Own Expense Or Disposal Will Bit Arranged) ** AGRA Earth & Environmental Group CONFIDENTIAL PET 041046 CA1069793

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Engineering & Environmental Services

HBT AGRA Limited Calgary, Alberta **TECHNICAL REPORT**

Date Received: June 28/93 Date Sampled: N/A Date of Report: July 31/93

File No · EC005611117040

SOIL ANALYSIS

Attention: Chris Wenzel

Project No.: CC00222.453

Flojoune											U EC005	
				Lab. No.	8030-93	8090-93	8088-93	8080-93	8130-93	8124-93	8103-93	8135-93
				Sample LD.	LA	SA	SA	SA	SSF	SSF	SSF	SSF
	Dete of		EPA		STN	STC	STN2	36	STC	STS	STS	STSW
Analyst	Anatysis	Pametemters	Method		2	2	2	2	4	3	4	4
	Ť			Surrogale								
· .				Recovery(%)	102	85	88	118	132	92	63	93
		· · · · · · · · · · · · · · · · · · ·		MDL				h0/0 c	iry wt.			
BC	12/7/93	Benzene	5030/8020	0.005	1.6	0.049	<0.005	0.18	7.7	0.011	22	0.11
BC	12/7/93	Toluene	5030/8020	0.005	0.52	0.074	0.009	0.30	7.1	0.045	34	<0.005
BC	12/7/93	Ethylbenzene	5030/8020	0.005	0.88	0.13	0.016	0.13	14	0.058	10	0.14
BC	12/7/93	Xylenes	5030/8020	0.005	4.3	0.50	0.048	1.3	15	0.42	52	1.0
BC	12/7/93	Moisture		%	53.5	50.3	28.2	15.1	33.0	15.9	30.7	56.8

MDL - Method Detection Limit

 \frown

PET 041047

Report reviewed by: Marie England

QA/QC Compliance Environmental Services

Raynald LeBlanc, M. Sc. Manager Environmental Services

Earth & Environmental Group

** All Samples Will Be Disposed Aller 30 Days Following Analysis. Please Contact The Lab II You Require Additional Sample Storage Time (Samples Deemed Hazardous Will Be Returned To The Client All Their Own Expense Or Disposal Will Be Arranged; **

CA1069794

Engineering & Environmental Services

TECHNICAL REPORT

HBT AGRA Limited Calgary, Alberta

4

1000

-

1

2

1

Ì

Date Received: June 28/93 Date Sampled: N/A Date of Report: July 31/93 Page 1 of 2

SOIL ANALYSIS

Attention: Chris Wenzel

Project No.	: CE00222.	453			File No.:	EC00561U17040	
	Date of					Parameters Electrical Conductivity McKaapue 4.12	
Analyst	Analysis	San	npie Descrip	tion	Lab. No.		
		Field	n dal Sie stran	Na		(mS/cm)	
PF	22/7/93	AG	6	1	7977-93	0.06	
PF	22/7/93	AGSSFN	BG	1	7982-93	0.03	
PF	22/7/93	AT	BG	1	8002-93	0.02	
PF	22/7/93	AU	BG	1	7946-93	0.01	
PF	22/7/93	AUS	STN1	1	7968-93	0.02	
PF	22/7/93	AUS	BG	1	7945-93	0.01	
PF	22/7/93	CN	1	1	7858-93	0.02	
PF	22/7/93	CN	BG	1	7943-93	0.10	
PF	22/7/93	CU	2	1	7957-93	0.21	
PF	22/7/93	DU	1	2	8012-93	2.43	
PF	22/7/93	GU	3	2	8045-93	0.10	
PF	22/7/93	GU	BG	1	8051-93	0.03	
PF	22/7/93	LA	STN	2	8030-93	1.59	
PF	22/7/93	LA	10	2	8018-93	0.19	
PF	22/7/93	LA	29	2	8026-93	0.13	
PF	22/7/93	PH	ST	3	8005-93	0.02	
PF	22/7/93	PH	2	2	8008-93	0.24	
PF	22/7/93	PH	BG	1	8010-93	0.02	
PF	22/7/93	RM	BG	1	7948-93	0.01	

MDL - Method Detection Limit

McKeegue - J.A. 1978 - Manual on Soil Sampling and Mathod of Analyses. Can. Soc. Sci. Ottawa.

In all Somples WeilBe Disposition After 30 Days, Following Analysis, Please Contact The Lab II You Require (Additional Sample Storage Time), Somples Doesned Hitzakitous Will Be Returned To The Client At Their Own Expense Or Disposal W., Be Arranged), IT. CONFIDENTIAL PET 041048

A G R A Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069795

Engineering & Environmental Services

TECHNICAL REPORT

HBT AGRA Limited Calgary, Alberta Date Received: June 28/93 Date Sampled: N/A Date of Report: July 31/93 Page 2 of 2

SOIL ANALYSIS

Attention: Chris Wenzel

Project No.	: CE00220				File No.:	EC00561U17040	
	Dete of					Electrical	
Analyst	Analysis	Sam	ple Descrip	noite	Lab. No.	Conductivity	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			McKeegue 4.12	
		Field mean	Site	No		(mS/cm)	
PF	22/7/93	SA	STC	2	8090-93	0.58	
PF	22/7/93	SA	STC	3	8099-93	0.20	
PF	22/7/93	SA	STN1	1	8086-93	0.03	
PF	22/7/93	SA	STN2	2	8089-93	3.16	
PF	22/7/93	SA	12	1	7964-93	0.03	
PF	22/7/93	SA	BG	Sa	8077-93	0.02	
PF	22/7/93	SA	BG	1	7944-93	0.06	
PF	22/7/93	SA	BG	2	8093-93	0.03	
PF	22/7/93	SSF	STS	4	8103-93	1.10	
PF	22/7/93	SSF	<b>B64</b>	1	8139-93	0.06	
PF	22/7/93	SSF	<b>B66</b>	1	8138-93	0.26	
PF	22/7/93	SSF	FL13	BG	8107-93	0.02	
PF	22/7/93	SSF	<b>B31</b>	1	8115-93	4.20	
PF	22/7/93	YB	2	1	7972-93	0.07	
PF	22/7/93	YUS	BG	1	7947-93	0.03	

MDL - Method Detection Limit

McKaegue - J.A. 1978 - Manual on Soll Sampling and Mathod of Analyses. Can. Soc. Sci. Ottawa.

Report reviewed by:

Brenda Chomin

QA/QC Compliance Environmental Services

Raynald LeBlanc, M. Sc. Manager Environmental Services

CONFI

** AP Samples Will Be Disposed After 30 DAlls Foldowing Acuitys's Preate Contact The Lab II You Require Additional Sample Storage Time - Samples Centred Hazardous W/P Be Returned To The Client At Their Own Excense Or Disposal VV, Se Arranged, 11



AGRA

Earth & Environmental Group

CA1069796

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

	Table	G – 2		
Analytical	Results for	Soils; Oi	land	Grease

				Hydrocarbons		
Field	Site	No.	Odour	Sampled Area	,	Oil and Grease by IR (µg/g dry wt)
				Criterion		5,00
			Indicates	parameter level exceeding criterio	on.	

	<b>.</b>	1 S = Strong	Flare Stack	260.000
AG	ST ST	1 S = Sirong 2 S	Sump Discharge	260,000
AG	-	2 5 3 S	Crude Tank	42,000
AG	ST ST	3 3 4 S	Produced Water Discharge	3,700
AG	-	4 S	Pit Discharge	33,000
AG AG	3 3	2 S	Weil Pad	44,000
AG	6	1 D = Distinct	Pit Discharge	2.800
AG	8	1 D	Pit Discharge	5,500
AG	10	1 D	Adjacent Pit	360
AT	ST	1 D	Process Area	13,000
AT	ST	3 S	Water Discharge	6,200
AT	1	1 F = Faint	Former Pit	1.100
AT	2	1 S	Pit	58,000
AT	2	2 D	Sump Overflow	7,200
AU	STN	1 S	Pit Sludge	880,000
AU	1	1 S	Adjacent Former Pit	750
AU	1	2 F	Adjacent Former Pit	3,700
AU	4	1 S	Former Pit	6,300
AU	17	1 S	Adjacent Pit	69,000
AU	19/198	1 S	Former Pit	1,100
AU	24	1 F	Adjacent Former Pit	2,600
AUS	STN1	1 F	Former Pit	420
AUS	1	2 S	Process Area	16,000
CN	1	1 S	Former Pit	59,000
CN	2	1 D	Former Pit	2,200
CN	11	1 D	Drainage Ditch	950
CN	12	1 S	Pit Sludge	430,000
CU	STN	1 S	Crude Tank	86,000
CU	STN	2 S	Off - Site	8,300
CU	2	1 D	Well Pad	7,000
DU	1	1 S	Produced Water Discharge	10,000
DU	1	2 S	Flare Stack	270,000
GU	ST	1 F	Pit Discharge	6,700
GU	ST	2 S	Pond / Flare Line	930
GU	ST	3 S	Diesel Tank	48.000
GU	ST	4 F	Sump Drain	2,600
GU	ST	6 S	Crude Tank Drain	10,000
GU	1	2 F	Pit Discharge	770
GU	3	1 N = None	Off-Site Stream	990
GU	3	2 D	Dumped Soil	60,000
GU	5	1 S	Pump / Off-Site	120,000
			l Co	ONFIDEN
			F	PET OFICIAL
				DNFIDENTIAL DET 041050

4

li

Ĩ

li

**1** 1 1

,

CA1069797

			пантиса	al Results for Soils; Oil and	Grease	
			Sample D	Description		Hydrocarbons
lield	Site	No.	Odour	Sampled Area		Oil and Grease by IR (µg/g dry wt)
				Criterion	-	5,000
			Indicates	parameter level exceeding cr	iterion.	
GU	5	2	N	Flare Stack		270
GU	8	1	S	Drainage Ditch	Г	73,000
GU	8	2	F	Ofi-Site	t l	11,000
LA	FL17	1	' S	Cresk Below Flowline	L L	12,000
LA	STC	1	F	Crude Tank	<u> </u>	1,500
LA	STC	2	D	Fuel Tanks	Г	21,000
LA	STC	3	D	Process Area	_	2,000
LA	STC	5	F	Diesel Tank		17,000
LA	STC	6	D	Crude Tank		5,800
LA	STC	7	F	Crude Tank	-	280
LA	STN	1	F	Crude Tank		72,000
LA	STN	2	S	Pit		210,000
LA	STN	3	S	Pit Discharge		26,000
LA	1	1	F	Pump	Γ	12,000
LA	5	1	F	Well Pad	-	3,000
LA	10	1	D	Flowine		16,000
LA	10	2	N	Weil Pad		4,500
LA	11B	1	F	Weil Pad		550
LA	12	1	F	Well Pad	-	3,600
LA	21	1	S	Well Pad - Flowline	L	140,000
LA	26	1	N	Off-Site		3,400
LA	26	2	N	Off-Site	-	590
LA	26	3	S	Well Pad - Flowline	L	51,000
LA	29	1		Flowine	-	1,600
LA	29	2		Well Pad	Ĺ	19,000
LA	34			Well Pad		1,500
LA	35			Well Pad - Flowline		100
РН	ST	1	-	Discharge Area	r	390
PH	ST	2		Flare Line		120,000
PH	ST	3		Drill Mud Discharge	ſ	100
PH	ST	4	-	Crude Tank		29,000
PH	2		-	Well Pad		21,000
PH	2			Of-Site		
PH	5		-	Off-Site Spill	l	42,000
RM	1			Well Pad	1	
SA	FL84	1		Below Pipeline		240,000
SA	STC	1	—	Crude Tank / Flare Line		11,000
SA	STC	2		Crude Tank Drain		130,000 8,700
SA	STC	3		Adjacent Pit		72,000
SA	STC	4		Diesel Tank Drain / Site Drain		
SA	STN1	1	D	Process Area	CONFIT	DENTIAL )410519,300

_

------

			Sample D	escription	Hydrocarbons
Field	Site	No.	Odour	Sampled Area	Oil and Grease by IR (µg/g dry wt)
				Criterion	5,0
			Indicates	parameter level exceeding criterion.	
SA	STN1	3	S	Water Discharge Area	6,
SA	STN1	4	s	Process Area Drain	3,
SA	STN2	1	D	Crude Tank	3,:
SA	STN2	2	s	Water/Waste Discharge Area	2.1
SA	STS	1	S	Tank Drainage Ditch	21,
SA	WW6	1	S	Adjacent Pit	230.
SA	1	1	S	Site Drainage	1,
SA	1	2	D	Site Drainage	35,
SA	8	1	D	Adjacent Former Pit	<u>_</u>
SA	9	1	D	Site Drainage	2,
SA	12	1	Ð	Former Pit	1,
SA	16	1	S	Adjacent Former Pit	7,
SA	20	1	F	Well Pad	11.
SA	21	1	S	Drained Pit	39,
SA	25	1	D	Well Pad	140,
SA	25	2	D	Adjacent Pit	2,
SA	23	1	S	Well Pad	73,
	_	י 1	D	Off-Site Depression	
SA .	28 34	1	s	Meter Station	230,
SA			F	Weil Pad	
SA	35	1		Flowine	92,
SA	36	1	S	riowine Chemical Tanks	150,
SA	36	2	D	Diesel Tank	
SA	36	3	S		44,
SA	43	1	S	Former Pit	9,
SA	46	1	F	Suspect Pit	
SA	72	1	D	Pit	
SA	77	1	N	Barren Area	
SA	78	1	F	Pit Discharge	2.
SA	86	1	NA	Site Drainage	270,
SA	93	1	F	Pit Discharge	<u>l</u> ,
SA	93	2	S	Drainage Ditch	31,
SA	94	1	D	Pit	530,
SA	94	3	S	Pit	760,
SA	97	1	D	Off-Site / Meter	290.
SA	100	1	S	Former Pit	20,
SA	1 <b>09</b>	1	S	Adjacent Pit	2,
SSF	STC	1	D	Adjacent Pit	2
SSF	STC	2	F	Crude Tank	2.
SSF	STC	2	F	Crude Tank	
SSF	STC	3	D	Fuel Tanks	
SSF	STC	4	D	Fuel Tanks	23
SSF	STC	5	—		DENTIAL 41052

i i

5

,'

jènu (

1.0

4

đ

1. al 1.

1

-

-

;

			Sample C	Description	Hydrocarbons
Field	Site	No.	Odour	Sampled Area	Oil and Grease by IR (µg/g dry wt)
				Criterion	5,000
			Indicates	parameter level exceeding criterion.	
SSF	STN	1	D	Adjacent Depression	6,800
SSF	STN	2	D	Pit Discharge	180
SSF	STN	3	S	Off-Site Discharge	2,100
SSF	STN	4	. s	Tank Area Drain	23,000
SSF	STS	1	F	Discharge Channel	200
SSF	STS	2	D	Crude Tank	2,100
SSF	STS	3	S	Diesel Tank	6,100
SSF	STS	4	S	Waste Pit Sludge near SSF23	480,000
SSF	STSW	1	S	Crude Tank Drain	51,000
SSF	STSW	2	D	Process Area Drain	990
SSF	STSW	3	S	Chemical Tanks	4,200
SSF	STSW	4	s	Discharge Channel	8,300
SSF	WF	1	D	Stream	230,000
SSF	A1	1	D	Suspect Pit	3,400
SSF	A24	1	F	Adjacent Pit	5,900
SSF	A43	1	S	Adjacent Pit	23,000
SSF	A43	2	D	Former Pit	14,000
SSF	A68	2	D	Former Pit	1,500
SSF	A68	1	F	Near Stream	-1
SSF	A68	3	F	Former Pit	1,700
SSF	A45B	1	s	Pit Discharge	140,000
SSF	B36	1	D	Former Pit	1,500
SSF	B52	1	F		20,000
	852 B57	1	S	Adjacent Pit	4,000
SSF SSF	859	1	D	Pit Discharge	230,000
		•	-	-	77,000
SSF	B63	1	S	Pit Former Pit	4,100
SSF	B64	1			110,000
SSF	866	1	-	Pit Discharge	110,000
SSF	SP1	1	_	Below Pipeline Valve	44.000
SSF	SP1	2		Below Pipeline	
SSF	6	1		Oil Seep	140.00
SSF	13	1	-	Chemicals / Pump Drain	5,40
SSF	31	1	-	Filter Dump Pit	
SSF	FLA6	1		Flowtine	23 1,40
YB	1	1	-	Unknown	11.00
YB	2	1		Adjacent Pit	70
YUS	1	1		Former Generator Area	
YUS	1	2	D	Former Process Area	90
YUS	1	3	S	Former Pit Discharge	7
YUS	1	. 4	F	Former Process Area	T 041053

CA1069800

1

Table G – 2	
Analytical Results for Soils; Oil an	d Grease

			Sample De	scription	Hydrocarbons
Field	Site	No.	Odour	Sampled Area	Oil and Grease by IR (µg/g dry wt)
				Criterion	5,000
			Indicates p	arameter level exceeding crite	arion.

### **Background Soils**

.,

۲

10. C. .

¢

1

4

1

1

أنت

AGSSFN	BG	1	N	Background Soil	110
AT	BG	1	N	Background Soli	340
AU	BG	1	N	Background Soil	170
AUS	BG	1	N	Background Soil	170
CN	BG	1	N	Background Soil	190
CU	8G	1	N	Background Soil	35
GU	BG	1	N	Background Soil	450
PH	8G	1	N	Background Soil	110
RM	BG	1	N	Background Soil	450
SA	8G	Sa	N	Background Soil	23
SA	BG	1	N	Background Soil	50
SA	BG	2	N	Background Soil	140
SSF	FL13	BG	N	Background Soil	830
YUS	BG	1	N	Background Soil	150

.

CONFIDENTIAL PET 041054

CA1069801

			Table G – 3 tical Results for Soils; pH	
		Sample D	escription	
Field	Site	No.	Area Sampled	pH
			<b>Adjusted Criterion</b>	4.5 - 7.5
		Indicates pa	arameter level exceeding criterion.	
AG	6	1	Pit Discharge	5.3
AUS	STN1	1	Former Pit	5.4
CN	1	1	Former Pit	5.3
CU	2	1	Well Pad	7.3
DU	1	2	Flare Stack	4.6
GU	3	2	Dumped Soil	7.2
LA	29	2	Well Pad	6.9
LA	10	2	Well Pad	4.9
LA	STN	2	Pit	7.8
РН	ST	3	Drill Mud Discharge	4.9
РН	2	2	Off-Site	7.8
SA	STC	2	Crude Tank Drain	6.3
SA	STC	3	Adjacent Pt	6.3
SA	STN1	1	Process Area	5.8
SA	STN2	2	Water/Waste Discharge Area	7.3
SA	12	1	Former Pit	5.6
SSF	STS	4	Waste Pit Sludge near SSF23	7.9
SSF	864	1	Former Pit	5.5
SSF	B66	1	Pit Discharge	6.6
SSF	31	1	Filter Dump Pit	8.1
YB	2	1	Adjacent Pt	5.5
Backgrou	ind Soils			
AGSSFN	BG	1	Background Soil	6.0
AT	BG	1	Background Soil	5.1
AU	BG	1	Background Soil	5.0
AUS	BG	1	Background Soil	5.2
CN	BG	1	Background Soil	7.5
GU	BG	1	Background Soil	4.8
PH	BG	1	Background Soil	4.9
RM	BG	1	Background Soil	5.2

Background Soil

**Background Soil** 

**Background Soil** 

**Background Soil** 

Background Soil

BG

BG

BG

FL13

BG

Sa

1

2

BG

1

SA

SA

SA

SSF

YUS

CA1069802

5.8

7.2

5.7

5.2

4.8

CONFIDENTIAL PET 041055

CA1069802

					А	nalytic	al Resu	lts for	Soils; I	Metals	6						
		Sa	ample l	Description		Heavy Metals											
	Field	Site	No,	Sampled Area	<0.003 As	<0.003 Hg	<0.003 Se	<5 Sn	<0.5 Ba	<0.5 Cd	<1 Cr in (µg/g)	<5 Co	<1 Cu	<5 Pb	<5 Mo	<5 Ni	<1 Zn
	L	<u> </u>	LI	Criteria	L					100 20 1 3 1							
		•				10	10	50	2000	20	1000	300	500	1000	40	500	1500
		ites par	amete	r level exceeding criterie	on. [			· · · · · · _ · · _ · · _ · · _ · · · _ · · · _ · · · · _ · · · · · · · · · · · · · · · · · · · ·									
	CN	1	1	Former Pit	-	-	_	_	140	2.0	130	12	50	79	<5	49	53
	DU	1	2	Flare Stack	-	-	-	_	69	<0.5	13	<5	212	570	<5	83	315
	GU	3	2	Dumped Soil	-	< 0.003	-	-	61	< 0.5	15	<5	7	72	<5	8	27
	GU	. 8	2	Off-site Seep		-	_	-	79	< 0.5	12	<5	12	26	<5	12	51
	LA	STN	2	Pit	0.010	0.043	0.028	15.9	159	<0.5	22	12	50	55	<5	18	84
	LA	29	2	Well Pad	-	_	_	_	775	< 0.5	11	6	24	49	<5	9	57
	PH	ST	3	Drill Mud Discharge	< 0.003	0.184	0.072	28.4	64	<0.5	17	<5	7	71	<5	8	28
	SA	STC	2	Site Drainage	0.005	0.038	0.114	54.0	370	<0,5	25	25	57	83	<5	25	132
	SA	STN1	1	Waste Discharge	_	-	-		560	< 0.1	14	20	44	51	<5	13	67
	SA	STN2	2	Filter Dump Pit	0.005	0.052	0.020	<5	160	<0.5	17	12	27	28	<5	15	48
	SSF	<b>B66</b>	1	Pit Discharge	0.01	0.022	0.173	40.1	800	<0.5	28	21	59	56	<5	25	76
	SSF	STC	1	Adjacent Pit	_	_	_		740	<0.5	27	24	80	83	<5	22	87
	SSF	STS	4	Waste Pit Sludge	0.007	0.288	0.020	13.2	210	<0.5	10	6	30	63	<5	22	87
	SSF	STSW	2	Process Area Drain	_	_			480	<0.5	73	33	71	66	<5	37	97
	SSF	31	1	Filter Dump Pit	0.006	< 0.003	0.024	9.18	200	<0.5	18	15	111	560	<5	25	714
	YB	2	1	Adjacent Pit	. <b>–</b>	_	-	-	240	<0.5	13	11	14	35	<5	17	68
	Backg	roun	<u>d So</u>	ils													
	AGSSF	BG	1	Background Soil	_	_	_	_	1190	<0.5	27	24	63	78	<5	22	71
$\mathcal{T}$		BG	1	Background Soil	+	-	_	-	105	<0.5	96	12	82	61	<5	45	36
	CN	BG	1	Background Soil		-	-	_	172	<0.5	23	<5	27	35	<5	14	51
mZ	GU	BG	1	Background Soil	0.017	0.050	0.027	<5	59	< 0.5	12	З	11	9	<5	11	53
	RM	BG	i	Background Soil	-	-	_	-	89	1.0	105	11	31	63	<5	32	45
50 H	SA	BG	Sa	Background Soil				-	58	<05	5	<5	9	13	<5	10	45
1NT	SA	BG	1	Background Soil	_	-	_	_	81	< 0.5	7	<5	9	11	<5	11	53
CONFIDENTIAL PET 041056	SA	BG	2	Background Soil	_			-	1,030	1.0	26	30	77	81	<5	19	86
54	YUS	BG	1	Background Soil	-	_	_	-	71	1.0	23	<5	13	49	<5	11	51

.

Table G - 4

•

CA1069803

CA1069803

á.

Statesta

						Table								
				Ana	lytical	Results	for Soils	s; Metals	\$					
	Sa	mple C	escription											
				<5	<0.1	<5	<1	<5	<5	<5	<5	<5	<10	<
Field	Site	No.	Sampled Area	AI	Be	Ca	Fe	Mg	<u>Mn</u>	<u>P</u>	<u> </u>	Na	<u> </u>	
L	Cana	adian	Criteria		4	_	<del></del>						_	
	Indicat	es para	meter level exceeding (	criterion.										
CN	1	1	Former Pit	80,300	< 0.1	190	51,330	345	120	240	160	33	21	
DU	1	2	Flare Stack	7,390	<0.1	5080	15,490	870	91	980	520	1,320	16.0	
GU	· 3	2	Dumped Soil	660,900	<0.1	57	6,720	190	11	41	190	21	<10	
GU	8	2	Off-site Seep	22,850	<0.1	35	11,630	2,560	50	132	603	22	<10	
LA	STN	2	Pit	445,300	<0.1	7730	30,840	5,400	330	720	1,700	1,690	14	
LA	29	2	Well Pad	120,300	<0.1	4190	14,790	5,640	220	580	1,500	520	<10	
PH	ST	3	Drill Mud Discharge	692,900	<0.1	55	7,210	200	11	44	160	23	<10	
SA	STC	2	Site Drainage	76,700	<0.1	3,050	32,470	3,400	260	1,560	802	1,230	132	
SA	STN1	1	Waste Discharge	56,670	<0.1	1,100	28,260	1,810	525	680	830	270	98	
SA	STN2	2	Filter Dump Pit	28,490	3.0	12,240	21,350	4,390	200	1,030	530	189	23	·
SSF	<b>B</b> 66	1	Pit Discharge	56,040	<0.1	1,370	33,290	3,590	430	550	644	200	29	
SSF	STC	1	Adjacent Pit	100,400	<0.1	1,070	42,480	2,770	540	1,220	834	<b>58</b> 5	23	
SSF	STS	4	Waste Pit Sludge	7,600	<0.1	52,470	22,230	1,190	230	240	270	4,900	36	
SSF	STSW	2	Process Area Drain	80,030	<0.1	1,590	44,460	3,410	655	1,940	860	785	41	
SSF	31	1	Filter Dump Pit	220,900	<0.1	36,120	57,550	4,770	390	590	830	1,440	52	
YB	2	1	Adjacent Pit	23,660	<0.1	2,170	21,360	3,570	830	230	932	49	- 45	
Backg	roun	d Soi	ils											
AGSSF	BG	1	Background Soil	93,520	<0.1	1400	35,960	2,390	730	684	632	115	30	
AU	BG	1	Background Soil	53,520	<0.1	61	48,540	585	270	291	186	29	35	
CN	BG	1	Background Soil	22,050	<0.1	3,235	154	3,570	101	113	1,410	178	<10	
GU	BG	1	Background Soil	14,800	0.1	63	12,500	938	50	96	270	< 50	<10	
Z RM	BG	1	Background Soil	62,610	<0.1	90	46,320	452	210	237	231	24	25	
CONFIDENT	BG	Sa	Background Soil	8,080	<0.1	930	9,820	1,550	130	196	363	8	<10	
TI SA	BG	1	Background Soil	9,280	<0.1	1,680	100	2,140	116	194	505	19	<10	
SA	BG	2	Background Soil	99,050	<0.1	750	41,750	2,610	1,210	1,220	700	140	162	
YUS	BG	1	Background Soil	47,610	< 0.1	107	27,130	1,950	93	167	805	35	19	

------

C. C. Harrison

624

	S	ample (	Description	Other Inorganics							
				Total	Free			····			
Field	Site	No.	Sampled Area	Cyanide	Cyanide	Sulphur	Bromide	Fluorid			
						(mg/Kg)					
			Criteria	500	10	2,000	50	2,0			
		Indicat	tes parameter level exceedi	ng criterion.							
РН	ST	3	Drill Mud Discharge	< 0.025		407	<8	<u>, , , , , , , , , , , , , , , , , , , </u>			
SSF	<b>B66</b>	1	Pit Discharge	0.028	-	3,227	<8>	1			
SA	STN2	2	Water/Waste Discharge Area	0.051	-	3,703	<8>	· (			
SSF	STS	4	Waste Pit Sludge near SSF23	0.062	-	12,315	< 8				
SSF	31	1	Filter Dump Pit	0.073	-	35,750	<8				
SA	STC	2	Crude Tank Drain	0.37	-	4,593	< 8				
GU	8	2	Off-Site	-	-	1,233	-				
LA	STN	2	Pit Sludge	0.047	0.54	319	< 8	. 1			
Backgr	ound S	oil									
GU	BG	1	Background Soil	-	-	< 20	-				

Table G - 6

CA1069805

AG AUS CN CU DU GU LA LA PH PH SA	5ite 6 STN1 1 2 1 3 10 29 STN	1 1 1 2 2 2 2	Odour ndicates p NA F S D S D	Sampled Area Canadian Soil Quality Criterio earameter level exceeding criterio Pit Discharge Former Pit Former Pit Well Pad Flare Stack		
AUS CN CU DU GU LA LA PH PH	STN1 1 2 1 3 10 29 STN	1 1 1 2 2 2 2	NA F S D S	Pit Discharge Former Pit Former Pit Well Pad		0.06 0.02 0.02
AUS CN CU DU GU LA LA PH PH	STN1 1 2 1 3 10 29 STN	1 1 1 2 2 2 2	NA F S D S	Pit Discharge Former Pit Former Pit Well Pad	n.	0.02 0.02
AUS CN CU DU GU LA LA PH PH	STN1 1 2 1 3 10 29 STN	1 1 2 2 2 2	F S D S	Former Pit Former Pit Well Pad		0.02 0.02
CNUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	1 2 1 3 10 29 STN	1 1 2 2 2 2	S D S	Former Pit Well Pad	<b></b>	0.02
CU DU GU LA LA PH PH	2 1 3 10 29 STN	1 2 2 2 2	D S	Well Pad	r	
DU GU LA LA PH PH	1 3 10 29 STN	2 2 2 2	S		<b>r</b>	0.21
GU LA LA PH PH	3 10 29 STN	2 2 2		Flare Stack		the second se
LA LA PH PH	10 29 STN	2 2	D	-	L	2.43
LA LA PH PH	29 STN	2		Dumped Soil		0.1
LA PH PH	STN		N	Well Pad		0.19
PH PH			D	Well Pad		0.18
PH		2	S	Pit		1.59
	2	2	S	Off-Site		0.24
SA	ST	3	F	Drill Mud Discharge		0.02
	12	1	D	Former Pit		0.03
SA	STC	2	S	Site Drainage		0.58
SA	STC	3	S	Adjacent Pit		0.2
SA	STN1	1	D	Process Area	_ <del></del>	0.03
SA	STS	3	S	Water/Waste Discharge Area		3.16
SSF	B31	1	S	Filter Dump Pit	[	4.2
SSF	B64	1	s S	Former Pit Pit Discharge		0.08
SSF	B66	1		-		1.1
SSF	STS	4	S S	Waste Pit Sludge near SSF23		0.07
үв Backgr	2 round	1 Soil	5	Adjacent Pit		0.07
AGSSF	BG	1	N	Road cut near well SSF76		0.03
AT	BG	1	N	Road cut near station		0.02
AU	BG	1	N	Background Soil		0.01
AUS	BG	1	N	Background Soil		0.01
CN	BG	1	N	Background Soil		0.1
GU	BG	1	N	Background Soil		0.03
PH	BG	1	N	Road cut near station		0.02
RM	BG	1	N	Background Soil		0.01
SA	BG	Sa	N	Road cut near well SA27		0.02
SA	BG	1	N	Background Soil		0.06
SA	BG	2	N	Background Soil		0.03
SSF	FL13	BG1	S	Background – 1.4 km		0.02
YUS	BG	1	N	Background Soil		0.03

### CA1069806

Second section

				Table G – 8	3			
		Ar	nalytical	Results for Soils; Benzene, Tolu	-	nzene and	Xylene	
			Sample I	dentification		Hydroc	arbons	
			·		Benzene	Toluene	Ethylbenzene	Xylenes
Field	Site	No.	Odour	Sampled Area		( ug/g dr	y weight )	
				Canadian Soil Quality Criteria	0.5	3	5	
				Indicates parameter level exceeding	g criterion.			
LA	STN	2	S	Pit	1.6	0.52	0.88	4
SA	36	2	D	Chemical Tanks	0.18	0.3	0.13	1
SA	STC	2	S	Site Drainage	0.049	0.074	0.13	0
SA	STN2	2	S	Water/Waste Discharge Area	< 0.005	0.09	0.016	0.04
SSF	STC	4	D	Fuel Tanks	7.7	7.1	14	
SSF	STS	3	· S	Diesel Tank	0.011	0.045	0.056	0.4
	STS	4	S	Waste Pit Sludge near SSF23	22	34	10	5
SSF SSF	STSW		S	Discharge Channel	0.11	< 0.005	0.14	

CA1069807

CA1069807

CONFIDENTIAL PET 041060

		Samp	le Description			••••	Water Analy	sis		
Field	Site	No.	Sampled Area	(4500H) рН @ 25°C	(4500P -8/D) Phosphate Total (<1 mg/L)	(4500C1-F) Chloride (<0.1 mg/L)	(2340 - D) TSS @ 105°C (<2 mg/L)	(2540 - C) TDS @ 180°C (<2 mg/L)	(43005-E) Sulphide (<0.1 mg/L)	(5520 – F) TPH by IR (<0.1 mg/L)
			Criteria	5.5 - 9.5	2	2,500	40	5,000	1	25
					Indicates parame	ətər ləvəl əxce	eding criterion.			
AT	ST	2	Produced Water Pit	6.39	0.01	71,100	3,076	140,000	0.3	
AU	11	1	Pond / Depression	6.92	0.03	0.7	15	35	0.3	
CN	STN	1	Produced Water Pit	7.71	0.04	678	<2	1,440	<0.1	6
DU	1	3	Produced Water Pit	7.57	0.05	12,700	520	20,000	2.0	
GU	ST	5	Produced Water Pit	6.56	0.04	47,000	2,120	81,000	1.5	4
GU	1	1	Pli Water	6.31	0.16	1.3	88	164	1.1	. 1
LA	STC	8	Produced Water Pit	7.56	0.24	5,390	1,804	10,200	3.0	
LA	STN	2	Produced Water Pit	7.46	0.24	4,440	496	9,000	4.3	6,8
RM	1	2	Pit Water	6.04	0.03	0.6	4	48	0.4	(
SA	94	2	Pit Water	6.05	0.12	5.0	76	44	2.1	
ļ										

Table G – 9Analytical Results for Pit Water Samples



**TECHNICAL REPORT** 

Engineering & Environmental Services

#### **PETROECUADOR - TEXACO**

#### Environmental Assessment

•	de Descrij ción de M		Hydrocarbo Hidrocarboa (1)		Conventional Convensional (2)		· · · ·	Other In Otros Inc (3	rganicos		
Fleid	Stte	No.	Of & Grease by IR	Moisture Humedad	Bq	Cyanide, Fr Clanuro, Lib		nide, Total nuro, Total			Fluoride
Campo	Sitio	Numero	Aceite y Grasa por IR (µg/g dry wt)	(%)	pa	Canara, Lic		(ing/		Bromuro	1 Paoraro
AG	<u>ड</u> ा	<b>سیسی ا</b> اندر 1	260,000	38.0					_		_
AG	ST	2	20,000	3.6	-	_ `		-	-	-	-
AG	ST	3 3		9.2				-	· _		-
AG	ST	4	3,700	33.5				-	-	-	-
AG	3	1		35.0				-		<del>.</del> .	-
AG	3	2	44,000	6.6	-	_		-	-	-	-
AG	6	1	2,800	32.5	<b>5.3</b>						<b>—</b> ·
AG	8	1	5,500	19.0	-	-		_		-	-
AG	10	1	360	<b>34.</b> I		-			<u>∖</u> † <b>-</b> (3	ि े <b>-</b> ्	. <del></del>
GSSFN	BG	1	110	33.1	6.0	-		-	-	-	-
AT.	ST		13,000	7.8					<del></del>		-
AT	ST	3	6,200	49.2	-	-		-		–	-
AT	1	- A 1 * 🔅	1,100	37.6	-				) . <del>-</del>		(11) <b>–</b> (1)
AT	2	1	58,000	73.3	-	-		-	-	-	-
AT	2	2	7,200	34.7	-	-		3 <b>-</b> 837.	-		-
AT	BG	1	340	31.3	5.1	-		-	-	-	-
AU	STN	1	880,000	8.6			983 C	-		er suur Eise <del>T</del> he	. <b>–</b> -
AU	1	1	750	18.6	-	-		-	-		-
AU	1	2	3,700	25.7		\$4 . <del>-</del> 3		→ + < ;;	_ ² – .	-	-
AU	4	1	6,300	30.9	-	-		-	-	-	-
AU	17	1	69,000	27.0							-
AU	19/19 <b>B</b>	1	1,100	31.0	_	-		-	-	-	-
AU	24	1	2,600	22.8		-	8 : Ma		· · .	-	-
AU	BG	1	170	35.0	5.0	-		-	-	-	-
AUS	STNI	1	420	29.7	. S. S.4 🔅 🗆	20. ti ji 🕳 - t	10 X ()	· -··· * `	· 🗕	-	-
AUS	1	2	16,000	30.6	-			-	-	-	-
AUS	BG	1.	170	27.7	5.2 S	an, aya Tariyan ya 🕳 a		-	-	· <b>-</b>	- :
CN	1	1	59,000	45.7	5.3	-		-	-	-	-
CN	2	1	2,200	40.5			e e e traca. Tale es		<b>_</b>		- "
CN	11	1	950	41.9	-	-	٠	-		-	-
CN	12	1	430,000	39.5	a de la c <b>e</b> nse da	den in 🗕 e	la test	<b>—</b>	-	-	-
CN	BG	1	190	14.8	7.5	-		-	-	-	-
CU	STN	1	86,000		9 <b></b> 1.	. <b></b> .	6 . L. T.	<b>.</b>	-	🛥	-
CU	STN	2	8,300	10.1	-	· -		-		-	
CU	2	1	7,000	7.7	7.3	an a		· 🛶 · · ·	• 🗕		-
ັດປ	BG	1	35	15.3	-	-		-	-		-
DU	1	. 1	10,000	46.0				- <b>-</b> - 22	_	5 1 1 <del>4</del> 1	<b>-</b>
DU	1	2	270,000	31.2	4.6			· _	_	-	-
GU	ST	-	6,700	51.3	a. ¹¹ <b>-</b>	19. j.	. S. 196	_		·	<b>_</b> ···
GU	ST	2	930	47.5	-	-		· <b>_</b>	-	-	-
GU	ST	. 3	48,000	22.3	se de d <u>e</u> la ca	2. st. j. s				-	_

(I) - Method: EPA 418.1, Method Detection Latert <20

(2) - Method: McKangua 4.12
 (3) - Method: Cymrade - APHA 4500, Method Detection Limit <0.025; Subber - EPA 3050, Method Detection Limit <20; Bromide - APHA 4500, Method Detection Limit <2; Fluonde - Fusion, Method Detection Limit <4;</li>

CONFIDENTIAL PET 041062

EPA - U.S. Enveromental Protection Againcy, 1986. Test Methods for Evaluation of Solid Waste Ind Ed. Office of Solid Waste Envergency Rampones, U.S. Environmental Protection Againcy, Washington, D.C. McKengte - J.A. 1978 - Mannai on Soli Sempling and Method of Analyses. Can. Soc. Sci. Officers. APHA - Samulard methods for the Examination of Weser and Wasterwater, 1989. 17th Ed. American Public Health Associat * Analyses Performed by Norwest Labo.



TECHNICAL REPORT

Engineering & Environmental Services

### **PETROECUADOR - TEXACO**

Environmental Assessment

	pie Descri ción de M						restional ressional (7)				Other In Otros Inc	rgunicos		
Field Campo	Site Sitio	No. Numero		by IR	Moisture Humedae		рĦ	Cyanid	, Free Libre	Cysa Clare	ide, Total aro, Total	Sulphur Azufre	Bromid	e Fluorid Fluorid
			(yag/g day a	(1)	(%)	ال					(mg/	Ke)		a described
GU	ST	4	2,600		42.3		-	-	•		-	-	-	
៤ប	ST	6	10,000		19.4						-		·	-
GU	1	2	770		37.6	212	-		•		<b></b>	-	-	-
GU.	3	n in <mark>H</mark> ama	990	•••••	38:5 8.1			9.24 C =			•••	-	. • <b>-</b> `	-
GU GU	3 	<b>2</b> €_2283	60,000 120,000		8.1 20.3		7.2	- ~	• vegagi	SQ (No.)	<b>-</b>		-	-
GU		11.127 <b>- 1</b> 1922 m <b>2</b>	270		30.9	2011 - 14 A	- 24992	7989 T	149/848-85- •	de Veri	_	~		-
GU		v no <b>f</b> era	73,000		40.5	n an Ar					<b>_</b>		_	_
GU	8	2	11,000	• • • • • • • •	36.1	2.0 K K 1 1,2				2012	<b>_</b> ``	1233		
GU	8	3	2,100		42.6	성공공	-				<b>-</b> .			
GU	BG	1	450		19.2		4.8	-				<20•		1.5*
LA	PL17	4. <b>- 1</b> -1-1	12,000	ts lot	39.0		-	i de la composición de			· 🛶	<del>-</del> 1		)))) <b>-</b>
LA	STC	1 	1,500	a na s	18.5	nis ai	_ ••	- 6400000266	• ********	87.8-0-3	·			-
LA	STC	1	21,000 2,000	- Carlor	12.0 25.1	gebrieken. G	-2000		Q. 7883	8. S. S. S. S.				s
LA LA:	STC	 11 11 - ∎12 12€1	2,000	a.	25.1 68.2	a arte		-	• 	ek di t	<b>_</b>		~2 <b>.</b>	
LA	STC	- 1997 <b>- 1</b> 996 - 1997 - 5	17,000	na una de	19.9	i jez jezhoù		eder Station	and degl	an sea	u <del>, T</del> rigueres I <b>-</b>	~ ;	ne si d <del>a f</del> edi	• <b>=</b> %(9%)%
IA .		6.80	5,800		27.0					1913 - 1913			200 <b>4</b> 8	6 - C - E
LA	STC	7	280	ander dered	23.8	2 () () () ()	-		⊷ ∧ % <u>,</u> 2:% •	X		•••		<b>به</b> به ۸۵٬۵۸٬۵۰ م. د
LA	STN)	1	72,000		ं 18.3	8. dege	- 33			e de la composition de la comp				
LA	STN	2 (sed_)	29,000		53.5		7.8		•		-			-
IA C	STN	· · · 2 · · ·	210,000		54.4			0.	<b>54</b>		0.047	319	4	161
LA	STN	3	26,000		49.0		-	- 	• •		-	<b>مد.</b> دومتر دیر	- 135 <b>-</b>	-
LA	1	1	12,000		22.2			a ana an	• K	.61.	-			4 R ( <del>-</del> 1
LA LA	5 ··· 10		3,000 16,000	· · · · · · · · · · · ·	24.0 27.4	ns 🖂	- 		• 	a	· <u> </u>		ಂದ್ರೆ	
LA	10	. 1.	4,500	111.0	35.3	1918 - L. 2	4.9	C Lexa	• 122 (13). •	м) на С	-		د <del>ک</del> ار دوری ه	····· -
LA	11B		550	se sa		stor i.	<u> </u>	****		5. <b>*</b> 1	-	·	· · · 🚆	
LA	12	1	3,600		24.9	· · · · · ·		•••••	* ** <b>-</b>	• •	-			-
LA	21 -	1	140,000		25.3		- 4		• j. j. j.	•. •	<b>-</b> '		-	-
LA	26	1	3,400		29.7		-	•	-		-	4.	-	-
LA	26	2	590		21.3		- 3		<b>.</b>	× . •	-	••• ·		. –
LA	26	3	51,000		7.7		-	•	<b>-</b>		-			-
LA LA	29	1 /	1,600	÷.	10.6				•·.		-	-	-	-
LA LA	29 34	2	19,000		9.0		6.9	net fa le	•		-		-	-
LA	35	1	1, <b>500</b> 100	· .	22.5 34.8	•	- 4				-		-	-
PH	ST	1			26.7			 	<b>.</b>		-		-	_
PH	ST	2	120,000	1999 (1997) <b>)</b>	22.2				-		-	. <b></b> ,	-	_
PH	ST	3	100	•	20.7		4.9	esta est			⊲.025	407	8	96
PH	ST	Ā	29,000	1	24.4		_		-				-	

 Method: EPA 418.1, Method Detection Limit <20</li>
 Method: McKeegue 4.12
 Method: McKeegue 4.12
 Method: Cyanide - APHA 4500, Method Detection Limit <20,025; Sulphar - EPA 3050, Method Detection Limit <20; Browide - APHA 4500, Method Detection Limit <40</li> CONFIDENTIAL PET 041063

EPA - U.S. Environmental Promotion Agency, 1986. Test Methods for Evaluation of Solid Waste 3rd Ed. Office of So Waste Emergency Response, U.S. Environmental Protocion Agency, Washington, D.C. McKengate - J.A. 1978 - Manual on Soil Sampling and Method of Analyses. Can. Soc. Soc. Oneven, APHA - Samoined unstood for the Examination of Water and Wastervare, 1989. 17th Ed. American Public Health Aste

Amilyin Performed by Norwest Labs.



CA1069810

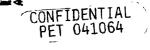
CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

**TECHNICAL REPORT** 

Engineering & Environmental Services

### **PETROECUADOR - TEXACO**

#### Environmental Assessment


	pie Descri pción de M		Hydrocarbo Hidrocarbo (1)	<b>es</b>	Conventional Convensional (2)		Other In Otros Inc	organicos		
Field	Site Sitio	No. Numero	Oll & Grease by IR Aceile y Grass por IR	Moisture Eumedad	pH	Cyanide, Free Clanure, Libre	Cyanide, Total Clanare, Total		Bromide Bromuro	
			(µg/g dry wi)	(%)	l		(mg	Kg)		
PH	2	1 ×	<b>\$5,000</b>	8.2	antin tamén	liyele <del>,</del> keri	ander – Alles	. –	-	-
PH	2	2	21,000	22.8 25.8	<b>7.8</b>	e la contra l'Alla de succes	— 2.172.01 - 1998:			-
PH	5	1	<b>42,000</b>		4.9	esta da su <b>e</b> nciendada Postenti un Concerno —	-	· · · · · · · · · · · · · · · · · · ·		-
PH	BG 1	1 1 (dup. 1)		26.7		ense.		<b>_</b> .	<u></u>	_
RM RM	1	1 (dup. 1)	2,700	21.5					·	_
RM	BG	1	and the second second second	24.7	5.2	-			a da 🛶 Ca	
SA	FL84	1 I I I I I I I I I I I I I I I I I I I	240,000	31.7	-				••••••••••••••••••••••••••••••••••••••	-
SA	STC		11,000	33.3		-		-	- <b>*</b> =*-	-
SA	STC	2	130,000	50.2 33.4	6.3 6.3	-	0.37	4,593	<b>4</b>	15
SA :	STC STC	<b>.</b>	8,700 72,000	27.5				223 <b>-</b> 388 -		.*** <b>"</b>
SA SA	STNI		530	33.3	5.8	<u>merī</u> ssi				)
SA	STNI	2	9,300	20.0		-			-	-
SA	STNI	ertet e <mark>s</mark> teret	6,200	38.7						20)2. <del>-</del>
SA	STNI	4	3,100	36.8	-	-	-		<b>.</b>	
SA	STN2	1	3,300	- 29.5				<u>-</u>		:-
SA	STN2	2	2,800	37.5	7.3	- Alter of all evidences	0.051	3,703	8	. 66
SA	STS WW6	1.	21,000 230,000	36.9 23.1	4.0.20 <b>.7</b> 0008			100 <b>.</b> 740	1925. <del>–</del> 17	
SA SA	1	1 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1.600	41.3		se - Euro			s.Ę.	2 - A. 🚆
SA	1	2	35,000	23.9	••••••••••••••••••••••••••••••••••••••	-	مر کردند این دی پرونونو (۱) —	-	- 1	-
SA	8	· 1	1,000	37.0			i Maria - Englishi Antonio - Englishi Antonio			
SA	9	1	2,600	17.7	-				-	-
SA	12	. 1	1,900	42.8	5.6	9997 <del>-</del> 283		-	e de la compañía de l	
SA	16	1	7,700	31.9	- 	- 19. 19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10				
SA. SA	20 21	1	11,000 39,000	20.7 36.9	1991 - 1992 - <b>-</b> 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 199 	898.98.2 <b>7</b> 9886 -	eren - ar er -	57 X <del>T</del> (27		
SA	21 25	1	140,000	24.5						-
SA	25	2	2,700	40.5			· -	-		
SA	27	1	73,000			ara - lata	an a			-
SA	28	1	99,000	39.8				<b>—</b>		
SA	34	1 A	230,000	31.2		er en		-	5 w.	-
SA	35	1	92,000	25.5	- 200 - 100 100 200		- 1.111-1.121-1.121-14	- 	ene <u>-</u>	-
SA SA	36 36	1	150,000 (1) 21,000	21.9 15.1		22879-12, <b>-</b> 2018 -	- us, un Toius -	: [ ¹ ] (politika)	5.87 <b>-</b> 31	
SA	36	3;:1 :	44,000	ाः १ <b>५</b> .१	egen Isaa			94 × 497	8 <b>-</b>	-
SA	43	1	9,500	40.0				-	-	-
SA	46	1	740	35.9	9 - 2 <b>-</b> 39	389 <b>-</b> 444		uginisee Rui (gi <b>tt</b> au		
SA	72	1	280	21.0	-				- 14 x 55 mail	
SA	77	1	460	35.9	1. Th <b>-</b> - 1. Mile	- 문화			-	

(1) - Method: EPA 418.1, Method Detection Limit <20

1

 (2) - Method: McKangus 4.12
 (3) - Method: Cymide - APHA 4500, Method Detection Limit <0.025; Subjur - EPA 3050, Method Detection Limit <20; Bromide - APHA 4500, Method Detection Limit <30</li> ica Linit 👁

EPA - U.S. Environmental Protection Agency, 1986. Test Methods for Evaluation of Solid Waste Ind Ed. Office of Solid Waste Enorgency Response, U.S. Environmental Protection Agency, Washington, D.C. McKengur - J.A. 1978 - Manual en Soli Sampling and Method of Analyses. Can. Soc. Sci. Otsewa. APIA - Standard methods for the Executation of Waster and Wasterwater, 1989. 17th Ed. American Public Health Associate - Analyses Performed by Norwest Labs.



2 AGRA Earth & Environmental Group

CA1069811

Engineering & Environmental Services

### **PETROECUADOR - TEXACO**

Environmental Assessment

	ple Descri ción de M			carbon carbone		Conventional Conventional		Ot	ber Inorgan		Page 4 of
Field Campo	Site Sitio	Ne. Numero	Oil & Grease   Acete y Grass	-	Meisture Eumedad	Eq	Cyanide, Free Clansers, Libre	Cyanide	(3) Total Sul	har Brog	uide Fluorid
			(Hø/g dry wi	<u> </u>	(%)		L		(mg/Kg)		
SA	78		2,200	and the	33.1			÷ –	· · · ·	 	-
SA	86	1	270,000		64.9	-		-	· .		-
SA	93	<b>. 1</b>	1,200		33.6		행관 강제 _ 김 영 - 영				-
SA	93	2	31,000	مرددة	49.2			-			-
SA.	94.	- 11 - 1 <b>1</b> - 14 - 14	530,000	- 20 Bel	57.9		-	··· -			•. •. <b></b>
SA	94	3	760,000	3. 5000 500	36.8	- 	- 	., . –	·	-	•
SA	97	1.23	290,000	es a sur es a sur e	16.0		84994 <b>-</b> 2977	ans		•	- in the
SA	100		20,000		35.5	-			. • • [•]	- 	-
SA	109	n an sta dhàir Ra	2 <b>,300</b> - 23	- 11.22	34.2			-	e e de la e	erse i di 🗖	-
SA SA	BG BG	<b>Sa</b> 2010-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	23 50/	- 100044	13.6 12.3	5.8 7.2	-				• 
SA	BG	destrik 🖕 📖	140	- 1944) -	26.3	5.7	in a de la company de la c	<u>, 1967 - 1967 -</u>	e la second		ta se
SSF	STC	:	2,700		38.0	3.7 San Aliana (Mariana)		ska -	nes en		
SSF	STC	- ≪≻ ≜	2,400		20.4		<b></b>	Seria (el 🗖	regente vila	n sadaan tahun s	ran diwe ter
SSF	STC	- 1.11. <b>3</b> . 199	210	1,000	35.3	o ciencia	xxx di Isaaca	er of E			See See
SSF	STC	a na sin an	23,000	: strange	33.0			o the P T	enstande el	768-0372an	t alies a 🖛 🗅
SSF	STC		420		31.2				Tengga sa sa		
SSF	STN	2000 <b>- 2</b> 000 - 2000 1	6,800		37.6	**************************************				708.4800 FT	
SSF	STN	- 2.00	180		36.1		en a cara a c	w. (			
SSF	STN	3	2,100	, and the	45.2			- vec ~ ext	n eye i seriye n e		- -
SSF	STN	ar a l <b>a</b> rtha	23,000		27.6			Q. (K. ). 🖕	C. C. S. C. S.		
SSF	STS	1	200	er mendad.	36.7			·	5 - K. 1929, N. 26 -	na se	
SSF	STS	2	2,100	و ومند رود. د فروی ادران ر	14.5			şe			
SSF	STS	3	6,100		15.9					n haanne look de. Kee	- 11 11 a
SSF	STS		480,000		24.8	7.9		0.0	12	315	8 92
SSF	STSW	1	51,000		25.0	-	-	-		• •	
SSF.	STSW	en t. 18. <b>2</b> m. ¹ .	990		35.5			š. – 🛓	87. 2007 V 1		
SSF	STSW	3	4,200		31.2	-	-				
SSF	STSW	(† 4. de	8,300		56.8	이 아이 부분했다.		-			• 1
SSF	WF	1	230,000		51.1	-	-				
SSF	AL .	1	3,400		23.3	- ***				••	
SSF	A24	1	5,900		35.1	_	-	-			
SSF	A43	<b>1</b> -579	23,000		36.9			-		an <u>1</u> ,	- 1 -
SSF	A43	2	14,000		42.8	-	-	-			
SSF	A68	1.8		e - eş 5.	39.4		(Served) - Constant (Served) 2019 - Constant (Served) 2019 - Constant (Served)	· -			
SSF	A68	2 .	1,500		45.6	-	-			•••	
SSF	A6B	3	1,700	·	45.6				• .*		-
SSF	A45B	1	140,000		26.8	-	-	-	•		
SSF	<b>B36</b>	1	1,500	•	18.3		195 <b>4 -</b> 19	· -	•		
SSF	B52	1	20,000		20.9	-	-	-	•		
SSF	BS7	- 1 · · ·	4,000	. 1580	*** 43:4 10		en den singer in sen en se Sen en sen en	· -			•

(1) - Method: EPA 418.1, Method Detection Latrix <20

EPA - U.S. Environmental Protection Agency, 1986. Test Methods for Evaluation of Solid Waste 3rd Ed. Office of Solid Worre Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. McKangon - J.A. 1978 - Macrail on Sol Sumpling and Method of Analyses. Cas. Soc. Sol. Oterwa. APHA - Standard method for the Examination of Water and Wasterwater, 1989. 17th Ed. American Public Health Associ

* Analyse Performed by Norwest Lebs.



Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

CA1069812

**TECHNICAL REPORT** 

Engineering & Environmental Services

### **TECHNICAL REPORT**

#### **PETROECUADOR - TEXACO**

#### Environmental Assessment

	aple Descri ipción de M			Hydrocarbo Hidrocarboz (1)		Conventional Convensional (7)			inorganics norganicos (3)		
Field Campo	Site Sitio	No. Numero	Aceite 3	Grease by IR y Grass por IR g/g dry wi)	Moisture Humedad (%)	pH	Cyanide, Free Clanuro, Libre		ai Sulphur al Azufre ag/Kg)	Bromide Bromuro	Fluorid Fluorum
SSF	B59	I	2	30,000	64.1	-	_	(	-		-
SSF	B63	1		77,000	25.8			·	· –	-	-
SSF	<b>B</b> 64	1		4,100	33.8	5.5	<b>-</b>		-	-	-
SSF	<b>B66</b>	1 🖄	: 1	10,000		6.6	없건걸: <b>-</b> 영어	0.028	3227	4	136
SSF	SP1	1		170	22.9	-			- 	·	-
SSF	SPI	2.2		44 <b>,000</b> 40,000	29.9					-	-
SSF SSF	6	∎ Set s tane5At		5,400	27.6	o ser de la ser				: -	-
SSP	13 B31	1. 1		90,000	20.5	8.1	-	0.073	35,750		160
SSF	FLAG FL13	i i BG	(a) A6 (NN) 1.1	230 830	31.B 29.9	5.2	-		-		· -
YB.			serre.	1,400 11,000						-	:
YB	ر ۱۳۰۰	1	일감관	500 700	23.0 27.2 26.6	د.د ح.د	-	-			- A
YUS	1	2	uni. Uritationi	900	23.3		-				· · · ·
YUS	1	3 - 2014 (488)		74 460	25.3	- 	- 9900000000000000000000000000000000000		-	-	-

1

(1) - Method: EPA 418.1, Method Detection Limit <20</li>
 (2) - Method: McKangas 4.12
 (3) - Method: Cymude - APHA 4500, Method Detection Limit <0.025; Sulphur - EPA 3050, Method Detection Limit <20, Brosside - APHA 4500, Method Detection Limit <2; Fluoncie - Fusion, Method Detection Limit <40</li>

EPA - U.S. Environmental Protection Agency, 1986. Test Methods for Evaluation of Solid Wasse 3rd Ed. Office of Solid Waste Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. McKeegue - J.A. 1978 - Manzal on Soil Sampling and Method of Analyses. Can. Son. Soil. Otheres. APHA - Standard method for the Examinance of Water and Wasterwater, 1989. 17th Ed. American Public Health Associa * Analysis Performed by Norwest Labs.

Report reviewed by: lar

Marie England QA/QC Compliance **Environmental Services** 

M. Sc R۹

Manager **Environmental Services** 

CONFIDENTIAL PET 041066

AGRA Ø Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Engineering & Environmental Services

### **TECHNICAL REPORT**

#### **PETROECUADOR - TEXACO**

**Environmental Assesment** 

Des	le Descr cripción /uestra	de												avy M ales Pe								:		• .		
		<b>s</b>	1 0003	<0.003	<0.003	उ	13	1 40.5		0.5	िउ	1	<u> ।</u> द	<u>_()</u>   <	<u> </u>	<u> </u>	<u> </u>	T	<b>T</b>	1		1 -	1	1		1
~						-		Ba	<b>⊲</b> .  ∎.	Cd	G				<    Fe	<5	<	4	4	<5   NI	√   ₽	4	4	<10		<b>1</b>
Field Campo	Site Sitie	No. Numero	Ar	Hg (va/a)	Se	Sa	(He/a)		Be	(ve/a)		Cr (ve/s)	Co (ve/s)	Cu	1	Pb (we/g)	Mg	Mn	Mo (He/a)	1	1. *	K	Na	T	V	Zn
		1 1444414			(µe/e)	<u>(49/8)</u>		(49/8)	(44/2)		<u>(ve/a)</u>	2				1 N.A. 1	<u>(va/a)</u>	(14/12)		(+*/*)			(44/4)	(ue/e)		
AGSSIFN	BG	1	-	-	÷	1 <del>7</del> 1	93,520	1190	<0,1	⊲0,5	1400	27	S 24	63	35,960		2,390	730	9	22	= <b>684</b>	632	115	30	110	71
AU	BG	1	-	-	-		53,520	105	⊲0.1	. <b>⊲0.5</b>	61	96	12 Sec. 411	<b>82</b>	48,540		585	270	ব	45	291	186	29	35	170	36
CN	1	1	-	-	-	-	80,300	÷ <b>,140</b>	<b>- 40.1</b>	2.0	190	130	89 H <b>1</b>	50	51,330		345	. 120.	. 4	- 49	240	160	33	21	145	53
CN	BG	1	-	-	-	-	22,050	172	401	<0.5	3,235	23	4	27	154	35	3,570	101	ব	14	113	1,410	178	<10	41	51
DU	1	1	-	••	-	·	7,390	69	<01	<b>40.5</b>		1 - 1 <b>1 1</b> 1	199 <b>4</b> -		15,490		170	91	4	. 83	980	520	1,320	16.0	170	315
GU	3	1	-	<0.003	-		660,900	61	⊲0.1	40.5	57.00	15	4	n seda <b>n</b> a	6,720	72	190		<		. 41	190	21	<10	ব	27
GU		1		-	-		22,850		⊴0.1	<0.5	S 35	200 <b>12</b> 0	े स <b>े</b>	12 	11,630		2,560	50	4	12	132	603	; 22	<10	42	51
GU	BG	I	0 017	0 050	0 027	<5	14,800*	59.1*	0.1*	<0.5*	63*	12.4*	30		12,500		938*	50.4*	4.	11*	96*	270*	<50*	<10*	41.8*	53 5*
LA	STN	1	0.010	0.043	0.028	15.9	445,300	159	<0.1	⊲0.5	7730	22	3 12		30,840		: <b>5,400</b>	- 330	4	in .	720	1,700	1,690	14	67	- 14
LA	29	2	-	-	-		120,300	775	<b>- 0.</b> I	⊲0.5	4190	11		24 X 655, 1	14,790	<b>47</b>	5,640	220	ن <b>د</b> ې د مورد ک	. <b>.</b>	580	1,500	520	<10	43	57
PH	<b>ST</b>	3	<0.003	Q 184	0.972	. 21.4 -	692,900	64	40.1	- <b></b>	55.00	11 ( ) - 17 () 104	<u>्</u> यः	4344.	7,210		200	- 11		· • • :	44 1	160	23	<10	41	28
RM	BG	1		-			62,610		<b>⊲0</b> .1	1.0	90	105		31 - 22 - 23 -	46,320	63	452	210		32	237	231	24 1,230	25	125	45
84	SIC	1	0.005	0,038	0.114	54.0	~~ <b>76,700</b>	370	- 40.1	् <b>२१.</b> ऽ	3,050	\$\$ <b>.</b> ₽	25 .	992 <b>24</b> -	32,470 28,260	- 19 M - 19 M		525	ି <del>ସ</del> ସ	~~ <b>49</b> . ••		· \$02	270	132	136	132
88	BTNI		-		-		56,670	560	<b>4</b> .	<0.5	1,100	14 8 889 7448 8	20 ತಿನ್ ಚಿತ್ರ	<b></b>			1,810	10.000	21.46 - 14	13	680	830		. 98	110	67
<b>8A</b>	8TN2	3	0.005	0.052	0.020	4	28,490	160	3.0		12,240	28 <b>4</b> 2	S. 133	998 <b>8</b> 4	21,350	~~ <b>#</b> ]	4,390	200	4	8- <b>15</b> .	1,030	() \$30 	189	23		41
8A	BG	8a	-	-	-	-	8,080	58	⊲01	⊲05	930	3 18.11 <b>2</b> .11	4	9 1 - 1 - 1 - 1 - 1	9,820	13	1,550	130	4	10	196	363		<10	30	45
<b>8</b> A	BC		-	~	-	-	9,280	<b>81</b>	<0.1	<0.S	1,690	S. 7.	4	ta 24	100	5. H. S	2,140	- <b>116</b> .	4	а <b>н</b> .	194	505	19	<10	32	53
<b>8</b> A	BG	2	-	-	-	-	99,050	1,030	<0.1	1.0	750	26	30	77	41,750		2,610	1,210	4	19	1,220	700	140	162	140	86
8SF	STC	1	-	-	-	_	100,400	740	- <b>40.</b> ]: .	:.⊲0.5	1,070	27	. 4	(H. 199 <b>80</b> ) (	42,440	1 147	2,770	540	. 4	22	1,220	* #34	. 585	23	133	87
BSF	ST8	4	0.007	0 288	0.020	13.2	7,600	210	⊲0.1	⊲0.5	52,470	10	6	30	22,230	63	1,190	230	4	22	240	270	4,900	36	49	#7
88F	875W	2	-	-	-	-	80,030	480	- 40,1	40.5	1,590	- <b>73</b> - 1	5 <b>13</b> -	- 7 <b>1</b>	44,460		3,410	655	ব	37	1,940	160	785	41	160	97
88F	<b>B66</b>	1	0 010	0.022	0 1 73	40.1	56,040	800	≪0.1	<b>40.5</b>	1,370	28 	21	59	33,290		3,590	430	4	25	550	644	200	29	135	76
<b>88</b> F	<b>B</b> 31	1	0.006	<0.003	0.024	9.18	220,900	200	⊲0,1	<b>40.5</b>	36,120	18 g	15	111.	57,550		4,770	390	4	25	590	830	1,440	52	60	714
YB	2	L	-	-	-	-	23,660	240	40.1	⊲0.5	2,170	13	11	14	21,360		3,570	830	4	17	230	932	. 49	45	47	68
YUS	BG	1	-	-	-		47,610	71	≪1.	e 1.0 j	107	8 9 <b>23</b> (	4	<b>D</b> :	2. 27,130	<b>. 49</b>	1,950	93	. 4	11	167	805	35	19	74	51

(1) - Method: EPA 3050

Analysis Performed by Norwest Labe

- Agency, Washington, D.C. EPA - U.S. Environmental Protection Agency, 1986 Test Methods for Evaluation of Solid Wate 3rd Ed. an 119, Pa

All Sumples Will Be Dispused After 30 Days Following Analysis Please Contact The Lab II You Require Additional Sample Storage Time

[Samples Deemed Hazardous Will Be Returned To The Chent At Their Own Expense Or Disposal Will Be Arranged) **

CONFIDENTIAL PET 041067 CA1069814

Report reviewed by: rma an am Marie Enlgand QA/QC Compliance Environmental Services

Paynald LeBlanc, M. Sc.

Managor **Environmental Services** 



**TECHNICAL REPORT** 

Engineering & Environmental Services

### PETROECUADOR - TEXACO

Environmental Assessment

	uple Descripti ipción de Mue		Hydrocar Bidrocari (1)	
Field Campo	Site Sitio	Na. Numero	Oil & Grease by IR Aceite y Grasa por IR (ug/g dry w0	Moisture Humedad (%)
AU AU LA	STC STC	BH3 BH2 TP1	670 200 86	24.5 26.5 26.5
GU LA	STC 32 STN	BH1 TP1 TP2	260 82 99	32.9 38.6 34.7
LA	STN	TP1	47	32.6
	STS	BH1	370	<b>18.3</b>
AU	STS	582	120	25.0
AU	7	581	140	27.9
AU	7	582	53	20.1
CON	STC	981)	160	27.7
CON	STC	9812	130	28.4
LA	STC	9811	460	34.8
LA	STC	BH2	3100	24.0
SSF	STC	TP2/4M	170	27.8
SSF	STC	TP3/4M	220	42.3
SSF SSF	SIN SIN B66	TP1 TP1 TP1	1100 31 22	38.9 20.5 42.5
SSF	A43	TP1	99	36.3
SSF	A43	172	[40	35.2
SSF	87	TP2	17000	37.0
SSF	87	TP1	150	42.5
SSF	71	TP1	260	39.6
SSF	71	172	510	38.5
AG	9	172	100	38.5
AG	9	171	63	27.7
AG	3	TP1	1700	26.9
AG	10	TP2	140	56.1
SSF	13	TP1	42	17.9
SSF	67	TP1	410	56:0
SSF	STS	TP1	1800	48.1
SA	STC	TP1	150	43:4
SA	STC	STP3	75	34.6
SA	ST3	TP2	4100	22.2
SA	75	TP1	130	38.9
SA	160	TPI	170	35.7
SA	STN1	TPI	2800	39.1

1 - Method: EPA 418.1, Method Detection Limit <20

EPA - U.S. Environmental Protection Agency, 1986. Test Matheds for Evaluation of Solid Waste 3rd Ed. Office of Solid Waste Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

Rayad LeBlang, M. S.

Manager

Report reviewed by er 00 مس Marie England QA/QC Compliance I

Earth & Environmental Group CONFIDENTIAL PET 041068

Engineering & Environmental Services

**TECHNICAL REPORT** 

PETROECUADOR - TEXACO
Environmental Assessment

	Sample Description Descripción de Muestr		Hydroca	1
Field Campo	Site Sitio	No. Numero	Oil and Gr Aceite y Gr (mg	ass por IR
SSF SSF	STC	TP2 TP3	<b>P</b>	2
SSF	B66 A43	TP1 WW1	a second second and a second	0
SSF	STN	WW1	۶ ۵ 0	2
SSF AG	71 9	TP1 TP2	.0.	6
AG	د	TP2	8	Terrena in alla a c
AG	لا	1P1	6	
AG AG		WW WW	(300000-00010010101010-00101010-0010-001	2
AG	10	ww	1	).2
AG	10	TPI		1
AG	10	TP3	0	.9
SA	STC	TP2		.6
SA	STS	TP1	∢	).2
SA	STN1	TP2		). <b>2</b>
SSF	13	SS	4	).2
SSF	STS	WW		). <b>2</b>
SSF	STSW	TP1	4	.5
SSF	STSW	TP2		).2
SSF	STSW	TP3	4	).2
SSF	STSW	WW		).2
SSF	O6	WW		).2

1 - Method: EPA 413.1, Method Detection Limit <0.2

2 - Method: McKengue 4.12

EPA - U.S. Bavironmental Protection Agency, 1986. Test Methods for Evolution of Solid Wate 3rd E4. Office of Solid Wate Emergency Response, U.S. Environmental Protection Agency, Wathington, D.C. McKengue - J.A. 1978 - Manual on Soil Sempling and Method of Analyses. Can. Soc. Soi. OR

Report reviewed by: Marie England

QA/QC Compliance **Environmental Services** 

Raynald LeBlanc, M. Sc.

Manager **Environmental Services** 

CONFIDENTIAL PET 041069

Earth & Environmental Group

AGRA

**TECHNICAL REPORT** 

44.11

. e

**HBT AGRA Limited** 

Engineering & Environmental Services

### **PETROECUADOR - TEXACO**

Environmental Assement

											···					Page 1 of 3
Field	Campo	AU	AU	AU	AU	AG	AG	AG	AG	AG	AG	AG	AG	CON	LA	LA
Site	Silio	STS	<b>ST</b> S	STC	<b>STS</b>	3	3	3	,	,	10	10	10	STG	STN	20
Number	Numero	881	MWI	ww	WWI	TPI	TP2	ww	TP2	ww	TPI	TPJ	ww	ww	WWI	55
Parameter	Parametros															
pii (units)	pii (unidadas)	7.11	6.35	6.05	7.03	- <b>-</b>	(14) <mark>,</mark> (4)	6.63	-,¥ <b>4</b> ,9	6.93	-	-	÷.	6.99	7.08	7.26
Specific Conductance (mS/cm)	Conducto Específico (mS/cm)	29	1.585	0.03	0.04	-		0.08		0.06	-	-	-	0.04	0.19	0.07
Turbidity NTU	Turbies NTU	88800	1800	2.6	3.3	문화국장관		13		12	· 🛶	++	-	85	5.5	7.8
Colour (true)	Color (verdadero)	3	500	1	5	-	-	-	-	I	-	-		25	1	23
Calcium, Diss.	Calcia, Dis.	236	15.6	2.0	3.39			6.4	ふ 違わ	7.8	-	-	-	3.4	23.9	6.9
Magneelum, Diss.	Magnesio, Dis.	66.5	5.0	<0.1	1.1	_		2.2	-	0.9		-	-	0.9	2.3	21
Potantium, Diss.	Peteric, Dis.	101	2.9	61		-	t i <b>X</b>	1.		3 <b>1</b> ()	황금이		<del></del>	1.2	4.2	· . 1.6
Sodium, Diss.	Sedie, Dis.	6755	270	3.7	4.6	-	-	2.1	-	1.9	_		-	3.2	11.9	4.2
Ires, T.	Borry, T.	32.4	21.7	0.12	6.)			<b>. 0.</b> )	방운영	0.3	y.ĝis <del>≂</del> ta i		· · · •	. 1.51	0,10	. 1.31
Manganese, Diss.	Manganesio, Dis.	. 4	10.3	⊲0.05	⊲0.05	-	-	⊲0.05	-	<0.05	-	-	-	⊲0.05	⊲0.05	<0.05
Bicarbonale, Diss.	Bicerbonate, Dis.	74	82	19	× ×			21		35	-		-	- 25	95	51
Carbonate, Diss.	Carbonate, Dis.	<	<1	<	<1	-	-	<1	-	4		-	-	<1	<1	<1
Chloride, Diss.	Claradas, Dis.	13800	490	21	0.1			89 <b>1.</b> 90		1.1	· 🚅	-	-	0.5	11	1.4
Sulphate, Diss.	Suifato, Dis.	1.7	2.7	1.2	0.1	-	_	5.5	-	1.5	-	-	-	1.2	2.6	0.24
Oll and Grasse by IR	Acelte y Grass por IR		. 1.0	0.5	0,3	67	8.3	. =	0.6	<0.2	1.1	0.9	-0.2	-	0.4	0.3
Alkalinity, T. as (CoCO3)	Alcalinidad, T. (CaCO3)	60	68	16	30	-		23	-	29	-	-	·	21	78	42
Hardness, T. as (CaCO3)	Durets, T. (CaCOJ)	863	60	5	13		·	25	·	23	-	-	-	12	69	26
Total Dissolved Solids (.45µm)	Solidos Totales Disueltos (.45µm)	22345	1965	275	860	-		1.95		140		-		135	420	460
Balance	Belance	0.81	0.95	0.72	0.76	-		1.01	•	0.91	-	-	-	1.04	1.05	0.89

PET Notes: All values are reported in mg/L unless otherwise stated; T. - total; Diss. - Dissolved.

Notas: Todas las unidades son reportadas en mg/L a menos de sor indicado diferente; T - total; Dis. - Disuelto.

> r

U41070

۹.-

** All Samples Will Be Disposed After 30 Days Following Analysis. Please Contact The Lab If You Require. Additional Sample Storage Time is many standard with the induce Will He Relationed To The Client At These Own Expense Or Disposal Will Be Arranged; **

AGRA Earth & Environmental Group

# **HBT AGRA Limited**

Engineering & Environmental Services

#### **PETROECUADOR - TEXACO**

									<u> </u>						Page 2 of 3
Campa	ы	LA	SA	5A	SA	SA	SA	SA	SA	SA	SA	SSF	SSF	SSF	85 <b>F</b>
Sitio	21	26	STC	STNI	STNI	STS	<b>ST</b> S	91	94	100	103	STC	STC	STC	STN
Numero	55	55	TP2	TP2	ww	ŤPI	ww	<b>ww</b> .	ww	ww	MW1	MWI	TP2	ТРЈ	WWI
Parametres															
pil (unidadeo)	6.72	6.75		- <del>(4</del> 10)	66	-	6.46	6,5	6.89	6.9	-	6.81	-	-	680
Conducto Específico (mS/cm)	0.08	0.02	-	-	0.10	-	0.11	0.081	0.24	0.16	-	0.58	-	-	0.12
Turbian NTU	3.1	5.8	÷.	-	1.4	•	4.4	5.3	3.4	3.9	` <b>~</b>	2600	-	-	1.1
Color (verdadero)	2	t	-	-			2	1	3	L	-	33	-	-	1
Calcin, Die.	6.9	1.1.1	1 <b>8</b> 80	1 🔮 🖓 1	7.9	e 🖷 🗧	. <b>41</b> 🔄	્યન સંસ્ટિટ્ટ	11.5	ji <b>13.5</b>	1 g. 📻 1	25.8	· н ·	<b>.</b>	. 7.8
Magnesio, Dis.	2.4	0,6	-	<del>.</del> .	2.2	-	2.6	1.4	7.3	3.1	-	15.1	-	-	3.8
Potsola, Die.	0.1	<b>40.1</b>		. A 🚓 🕄	1.5		1.2	11	26.9	\$ <b>``2</b> };		¹ <b>1</b> .1	-	<b>•</b> (	1.2
Sodie, Dis.	5.3	2.2	-	<del>.</del>	3.3		3.8	5.2	19.7	5.8		20.9	-	·-	5.3
	0,10	0.11			-0.05	cto.	<0.05	0.16	0.13	0.17	-	10,1	-	-	<0.05
Manganosio, Dis.	<0.05	<0.05	-	-	<0.05	-	⊲0.05	<0.05	<0.05	⊲0.05	-	0.69	-	-	<0.05
Dicerbeaste, Din.	50	16			<b>41</b>	8 <b>-</b> 88	<b>4</b>	35	147	62	-	47	-	· •• · · ·	72
Carboanie, Dis.	<1	<1	-	-	4	-	<1	<1	<1	<1	-	<1	-	-	<1
Clorudes, Dis.	1.3	0.62			25	(* <b>*</b> 12.	3.8	2.5	23	24	-	135	-	÷	7
Sulfite, Dis.	1.1	1.2	-	-	2.4	-	1.3	2.7	3.1	2.4	-	1.3	-	-	1.4
Acutto y Grass por IR	0.3	0.2	0.6	<b>4</b> 0,2	- 40.2	-0.2	40.2	⊲0.2	-0.2	0.6	0.2	-	⊲0.2	<0.2	<b>40.2</b>
Alcalinidad, T. (CuCO3)	41	13	-	-	34	-	36	29	121	51	-	39	-	-	59
Dursta, T. (CuCOJ)	27	7	-	÷	. 29 🗧 🤊	· · · · · · · · · · · · · · · · · · ·	31	17	59	46		127	-	-	35
Solidos Tetales Disachos (.45µm)	315	250	-	<b>_</b>	440	-	335	265	370	250	-	750	-	-	225
Balance	0.91	0.79	<del></del>		0.96	÷	0.95	0.86	0.87	0.71	· · <b>_</b>	0.84	-	-	0.68
	Skio Numero Parametrum pH (unidadeo) Conducto Específico (u.S/cm) Turbian NTU Color (verdadero) Colos, Dia. Magnesia, Dia. Potnia, Dia. Sodie, Dia. Hurra, T. Manganesia, Dia. Bicartunania, Dia. Bicartunania, Dia. Carbonelo, Dia. Bicartunania, Dia. Carbonelo, Dia. Ciardone, Dia. Sulfato, Dia. Acuta y Grana por IR Akcalinidad, T. (C=CO3) Durena, T. (C=CO3) Solidos Tetales Disaetice (.45µm)	Sitio     21       Numeres     55       Parametrem     55       Parametrem     6.72       Conducto Especifico (mS/cm)     0.08       Turbiam NTU     2.1       Color (verdadero)     2       Calcin, Dia.     6.9       Magnenie, Dia.     2.4       Potanie, Dia.     6.8       Sodie, Dia.     5.3       Harry, T.     0.05       Bicerbasele, Dia.     50       Carbonelo, Dia.     50       Corrotone, Dia.     50       Corrotone, Dia.     1.1       Aculta y Grama por IR     0.3       Akcalinidad, T. (CeCO3)     27       Solidos Totales Dissetios (.45µm)     315	Sitio         21         26           Numere         55         55           Parametree         55         55           Parametree         6.72         6.73           gil (unidadee)         6.72         6.73           Cenducts Especifico (unS/cm)         0.08         0.02           Turbian NTU         3.1         5.8           Color (verdadero)         2         1           Calcin, Dia.         6.9         1.8           Magnenie, Dia.         2.4         0.6           Potania, Dia.         5.3         2.2           Harry, T.         6.10         6.11           Sodie, Dia.         5.3         2.2           Harry, T.         6.10         6.11           Magneneie, Dia.         5.3         2.2           Harry, T.         6.10         6.11           Magneneie, Dia.         5.3         2.2           Harry, T.         Color         6.11           Magneneie, Dia.         5.3         2.2           Station, Dia.         5.3         2.2           Saline, Dia.         1.3         0.62           Saline, Dia.         1.3         0.62           Saline, D	Sitio         21         26         STC           Numero         55         55         TP2           Parametrum         gH (midiadeo)         6.72         6.73            Cenducto Especifico (mS/cm)         0.06         0.02            Turbian NTU         3.1         5.8            Color (verdiadero)         2         1            Calcin, Dia.         6.9         1.8            Magnenia, Dia.         2.4         0.6         -           Potania, Dia.         5.3         2.2         -           Hurris, T.         0.19         0.11            Sodie, Dia.         5.3         2.2         -           Hurris, T.         0.19         0.11            Magnessis, Dia.         5.3         2.2         -           Hurris, T.         0.19         0.11            Magnessis, Dia.         5.3         2.2         -           Magnessis, Dia.         1.1         -         -           Carbonalo, Dia.         1.1         1.2         -           Carbonalo, Dia.         1.1         1.2         -      <	Sitio         21         26         STC         STNI           Numere         55         55         TP2         TP2           Parametron         55         55         TP2         TP2           Parametron         6.72         6.73         -         -           Conducts Especifico (mS/cm)         0.08         0.02         -         -           Turbian NTU         3.1         5.8         -         -         -           Color (verdadero)         2         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Sitio       21       26       STC       STN1       STN1         Numere       55       55       TP2       TP2       WW         Parametron       6.72       6.73       -       -       6.6         Conducts Especifics (mS/cm)       0.08       0.02       -       -       0.10         Turbian NTU       3.1       5.8       -       -       1.4         Color (verdadero)       2       1       -       -       1         Catchs, Dis.       6.9       1.8       -       -       2.2         Potania, Dis.       2.4       0.6       -       -       2.2         Potania, Dis.       5.3       2.2       -       -       3.3         Harris, T.       0.19       0.11       -       -       4.03         Sodie, Dis.       5.3       2.2       -       -       3.3         Harris, T.       0.19       0.11       -       -       4.03         Magnessie, Dis.       5.3       2.2       -       -       3.3         Harris, T.       0.19       0.11       -       -       4.03         Carbonale, Dis.       1.6       0.05 <t< th=""><th>Sitio         21         26         STC         STN1         STN1         STS           Numere         55         55         TP2         TP2         WW         TP1           Parametree         #3 (midadee)         6.72         4.75         -         -         6.6         -           Conducts Especifico (mS/cm)         0.08         0.02         -         -         0.10         -           Turbian NTU         3.1         5.8         -         -         1.4         -           Color (verdadero)         2         1         -         -         1.4         -           Color (verdadero)         2         1         -         -         1.4         -           Color (verdadero)         2         1         -         -         1.4         -           Color (verdadero)         2         1.4         -         7.9         -         -           Magenoie, Dia.         2.4         0.6         -         -         2.2         -           Magenoie, Dia.         5.3         2.2         -         -         3.3         -           Mangenoie, Dia.         5.3         2.2         -         -         <t< th=""><th>Sitio       21       26       STC       STN1       STN1       STS       STS         Numere       55       55       TP2       TP2       WW       TP1       WW         Parametrum       $gff (midades)$       6.72       6.73       $=$ $=$       6.6       $=$       6.46         Conducto Expectitics (mS/cm)       0.06       0.02       $=$ $=$       0.10       $=$       0.11         Turbian NTU       3.1       5.8       $=$ $=$       1.4       $=$       4.4         Color (verdiadero)       2       1       $=$ $=$       1.4       $=$       4.4         Color (verdiadero)       2       1       $=$ $=$ $=$       1.4       $=$       4.4         Color (verdiadero)       2       1       $=$ $=$ $=$       2.6         Potania, Dia.       2.4       0.6       $=$ $=$ $2.6$ $=$ $=$ $2.6$         Potania, Dia.       $5.3$ $2.2$ $=$ $=$ $3.3$ $=$ $3.8$         Magnetric, Dia.       $5.3$ $2.2$ $=$ $=$ $3.6$ $=$</th><th>Sitio         21         26         STC         STN1         STS         STS         96           Numeres         55         55         TP2         TP2         WW         TP1         WW         WW           pl3 (unitation)         6.72         6.73         -         -         6.64         6.3           Conduct Expectitics (mS/cm)         0.06         0.02         -         -         0.10         -         0.11         0.081           Turbium NTU         3.1         5.8         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         2.1         4.4         5.3           Color (wordadero)         2         1.8         -         -         2.2         1.3         5.2         1.3           Magnessia, Dis.         2.4         0.6         -         -         2.2         -         2.6         1.4</th><th>Sitio         21         26         STC         STN1         STN1         STS         STS         96         54           Numere         55         55         TP2         TP2         WW         TP1         WW         WW         WW           Parametree         gB3 (motindee)         6.72         6.75         -         -         6.66         -         -         6.46         6.5         6.89           Conducto Expectifico (mSicm)         0.08         0.02         -         -         0.10         -         0.11         0.081         0.24           Turbian NTU         3.1         5.8         -         -         1.4         -         4.4         5.3         3.4           Color (verdadero)         2         1         -         -         2         1         3           Color (verdadero)         2         1         -         -         2.6         1.4         7.3           Sodie, Din.         5.3         2.2         -         -         3.8         5.2         19.7           Harry, T.         6.10         6.11         -         -         -         -         -         -         -         0.05         <t< th=""><th>Sitio         21         26         STC         STN1         STN1         STS         STS         58         54         166           Namere         55         55         TP2         TP2         WW         TP1         WW         W         W</th><th>Satio         21         26         STC         STN1         STN1         STS         51         90         94         100         103           Numeers         25         55         TP2         TP2         WW         TP1         WW         MW         MW</th></t<><th>Sitio         21         26         STC         STN1         STN1         STS         STS         90         94         100         103         STC           Namere         55         55         TP2         TP2         WW         TP1         WW         WW         WW         WW         MW         MW1         MW1           Parametree        </th><th>Sitio       21       26       STC       STN1       STN1       STS       STS       90       94       160       163       STC       STC         Parametree       55       55       TP2       TP2       WW       TP1       WW       WW       WW       WW       MW1       MW1       TT2         Parametree      </th><th>Campo       LA       LA       SA       SA</th></th></t<></th></t<>	Sitio         21         26         STC         STN1         STN1         STS           Numere         55         55         TP2         TP2         WW         TP1           Parametree         #3 (midadee)         6.72         4.75         -         -         6.6         -           Conducts Especifico (mS/cm)         0.08         0.02         -         -         0.10         -           Turbian NTU         3.1         5.8         -         -         1.4         -           Color (verdadero)         2         1         -         -         1.4         -           Color (verdadero)         2         1         -         -         1.4         -           Color (verdadero)         2         1         -         -         1.4         -           Color (verdadero)         2         1.4         -         7.9         -         -           Magenoie, Dia.         2.4         0.6         -         -         2.2         -           Magenoie, Dia.         5.3         2.2         -         -         3.3         -           Mangenoie, Dia.         5.3         2.2         -         - <t< th=""><th>Sitio       21       26       STC       STN1       STN1       STS       STS         Numere       55       55       TP2       TP2       WW       TP1       WW         Parametrum       $gff (midades)$       6.72       6.73       $=$ $=$       6.6       $=$       6.46         Conducto Expectitics (mS/cm)       0.06       0.02       $=$ $=$       0.10       $=$       0.11         Turbian NTU       3.1       5.8       $=$ $=$       1.4       $=$       4.4         Color (verdiadero)       2       1       $=$ $=$       1.4       $=$       4.4         Color (verdiadero)       2       1       $=$ $=$ $=$       1.4       $=$       4.4         Color (verdiadero)       2       1       $=$ $=$ $=$       2.6         Potania, Dia.       2.4       0.6       $=$ $=$ $2.6$ $=$ $=$ $2.6$         Potania, Dia.       $5.3$ $2.2$ $=$ $=$ $3.3$ $=$ $3.8$         Magnetric, Dia.       $5.3$ $2.2$ $=$ $=$ $3.6$ $=$</th><th>Sitio         21         26         STC         STN1         STS         STS         96           Numeres         55         55         TP2         TP2         WW         TP1         WW         WW           pl3 (unitation)         6.72         6.73         -         -         6.64         6.3           Conduct Expectitics (mS/cm)         0.06         0.02         -         -         0.10         -         0.11         0.081           Turbium NTU         3.1         5.8         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         2.1         4.4         5.3           Color (wordadero)         2         1.8         -         -         2.2         1.3         5.2         1.3           Magnessia, Dis.         2.4         0.6         -         -         2.2         -         2.6         1.4</th><th>Sitio         21         26         STC         STN1         STN1         STS         STS         96         54           Numere         55         55         TP2         TP2         WW         TP1         WW         WW         WW           Parametree         gB3 (motindee)         6.72         6.75         -         -         6.66         -         -         6.46         6.5         6.89           Conducto Expectifico (mSicm)         0.08         0.02         -         -         0.10         -         0.11         0.081         0.24           Turbian NTU         3.1         5.8         -         -         1.4         -         4.4         5.3         3.4           Color (verdadero)         2         1         -         -         2         1         3           Color (verdadero)         2         1         -         -         2.6         1.4         7.3           Sodie, Din.         5.3         2.2         -         -         3.8         5.2         19.7           Harry, T.         6.10         6.11         -         -         -         -         -         -         -         0.05         <t< th=""><th>Sitio         21         26         STC         STN1         STN1         STS         STS         58         54         166           Namere         55         55         TP2         TP2         WW         TP1         WW         W         W</th><th>Satio         21         26         STC         STN1         STN1         STS         51         90         94         100         103           Numeers         25         55         TP2         TP2         WW         TP1         WW         MW         MW</th></t<><th>Sitio         21         26         STC         STN1         STN1         STS         STS         90         94         100         103         STC           Namere         55         55         TP2         TP2         WW         TP1         WW         WW         WW         WW         MW         MW1         MW1           Parametree        </th><th>Sitio       21       26       STC       STN1       STN1       STS       STS       90       94       160       163       STC       STC         Parametree       55       55       TP2       TP2       WW       TP1       WW       WW       WW       WW       MW1       MW1       TT2         Parametree      </th><th>Campo       LA       LA       SA       SA</th></th></t<>	Sitio       21       26       STC       STN1       STN1       STS       STS         Numere       55       55       TP2       TP2       WW       TP1       WW         Parametrum $gff (midades)$ 6.72       6.73 $=$ $=$ 6.6 $=$ 6.46         Conducto Expectitics (mS/cm)       0.06       0.02 $=$ $=$ 0.10 $=$ 0.11         Turbian NTU       3.1       5.8 $=$ $=$ 1.4 $=$ 4.4         Color (verdiadero)       2       1 $=$ $=$ 1.4 $=$ 4.4         Color (verdiadero)       2       1 $=$ $=$ $=$ 1.4 $=$ 4.4         Color (verdiadero)       2       1 $=$ $=$ $=$ 2.6         Potania, Dia.       2.4       0.6 $=$ $=$ $2.6$ $=$ $=$ $2.6$ Potania, Dia. $5.3$ $2.2$ $=$ $=$ $3.3$ $=$ $3.8$ Magnetric, Dia. $5.3$ $2.2$ $=$ $=$ $3.6$ $=$	Sitio         21         26         STC         STN1         STS         STS         96           Numeres         55         55         TP2         TP2         WW         TP1         WW         WW           pl3 (unitation)         6.72         6.73         -         -         6.64         6.3           Conduct Expectitics (mS/cm)         0.06         0.02         -         -         0.10         -         0.11         0.081           Turbium NTU         3.1         5.8         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         1.4         -         4.4         5.3           Color (wordadero)         2         1         -         -         2.1         4.4         5.3           Color (wordadero)         2         1.8         -         -         2.2         1.3         5.2         1.3           Magnessia, Dis.         2.4         0.6         -         -         2.2         -         2.6         1.4	Sitio         21         26         STC         STN1         STN1         STS         STS         96         54           Numere         55         55         TP2         TP2         WW         TP1         WW         WW         WW           Parametree         gB3 (motindee)         6.72         6.75         -         -         6.66         -         -         6.46         6.5         6.89           Conducto Expectifico (mSicm)         0.08         0.02         -         -         0.10         -         0.11         0.081         0.24           Turbian NTU         3.1         5.8         -         -         1.4         -         4.4         5.3         3.4           Color (verdadero)         2         1         -         -         2         1         3           Color (verdadero)         2         1         -         -         2.6         1.4         7.3           Sodie, Din.         5.3         2.2         -         -         3.8         5.2         19.7           Harry, T.         6.10         6.11         -         -         -         -         -         -         -         0.05 <t< th=""><th>Sitio         21         26         STC         STN1         STN1         STS         STS         58         54         166           Namere         55         55         TP2         TP2         WW         TP1         WW         W         W</th><th>Satio         21         26         STC         STN1         STN1         STS         51         90         94         100         103           Numeers         25         55         TP2         TP2         WW         TP1         WW         MW         MW</th></t<> <th>Sitio         21         26         STC         STN1         STN1         STS         STS         90         94         100         103         STC           Namere         55         55         TP2         TP2         WW         TP1         WW         WW         WW         WW         MW         MW1         MW1           Parametree        </th> <th>Sitio       21       26       STC       STN1       STN1       STS       STS       90       94       160       163       STC       STC         Parametree       55       55       TP2       TP2       WW       TP1       WW       WW       WW       WW       MW1       MW1       TT2         Parametree      </th> <th>Campo       LA       LA       SA       SA</th>	Sitio         21         26         STC         STN1         STN1         STS         STS         58         54         166           Namere         55         55         TP2         TP2         WW         TP1         WW         W         W	Satio         21         26         STC         STN1         STN1         STS         51         90         94         100         103           Numeers         25         55         TP2         TP2         WW         TP1         WW         MW         MW	Sitio         21         26         STC         STN1         STN1         STS         STS         90         94         100         103         STC           Namere         55         55         TP2         TP2         WW         TP1         WW         WW         WW         WW         MW         MW1         MW1           Parametree	Sitio       21       26       STC       STN1       STN1       STS       STS       90       94       160       163       STC       STC         Parametree       55       55       TP2       TP2       WW       TP1       WW       WW       WW       WW       MW1       MW1       TT2         Parametree	Campo       LA       LA       SA       SA

Notes: All values are reported in mg/L unless otherwise stated; T. - total; Diss. - Dissolved.

-----

Notas: Todas las unidades son reportadas en mg/L a menos de ser indicado diferente; T - total; Dis. - Disuelto.

CONFIDENTIAL PET 041071

**All Samples Will Be Disposed After 30 Days Fullowing Analysis. Please Contact The Lab II You Require Additional Sample Storage Time (Samples Deemed Hazardous Will Be Returned To The Client At Their Own Expense Or Disposal Will Be Arranged) **



F

CA1069818

CA1069818

### **TECHNICAL REPORT**

**TECHNICAL REPORT** 

i .

### **PETROECUADOR - TEXACO**

					*									Page 3 of 3
Field	Campo	55 <b>F</b>	85F	88 <b>F</b>	58 <b>F</b>	85F	SSF	- 8SF	85F	SSF	SSF	Villa Licrosco	Culebra	Eno
Site	SHIO	SSTSW	<b>5</b> TS	STS	STSW	STSW	A43	B66	6	13	71			
Number	Numero	TPI	ТРЈ	ww	TP2	ww	WWI	TPI	ww	83	трі			
Parameter	Parametros													
pli (naka)	pHI (unidadas)	<b>-</b>	<b>n</b> (4)	6.92		े डा <del>ई</del> क्रिके	6.32	an ( <del>a</del>	1.5	· +	-	5.85	5.98	6.69
Specific Conductance (mS/cm)	Conducto Especifico (mS/cm)	. –	-	0.08	-		0.12		-	-	-	0.01	0.01	0.08
Turbidity NTU	Turtifuna NTU	- 1 🚑 🗄 A	i <b>⊷</b> ()	10	: ::: <b>:</b>		4.4	s (s ) 🐳 👘	-	·	••	1.9	13	15
Colour (true)	Color (verdadero)		-	-	-	<del>.</del>	ţ	-	-	-	-	1	2	2
Calchun, Dine.	Calcin, Din.	-	- 1 <b>-</b>	<b>1.6</b>			6.1				. <b>.</b> .	<b>&lt;0.1</b>	0.8	7.3 ·
Magnesium, Diss.	Magnesie, Dis.	-	. –	3.1	<del>.</del>		4.5	-		-	-	<0.1	0.5	3.4
Petandem, Dies.	Putnele, Die	문활동물	( <del>.</del>	2 <b>I.</b> 4			دا			201 <b>-</b>	8 ( <b>)</b> - 3	0.9	S. ⊂0.1	. 1.2
Sodium, Diss.	Sodie, Dis.	-	-	2.8		-	4.4			-	-	1.7	1.3	4.9
Ires, T.	Harre, T.	<b></b>	i de <del>n</del> dat	. <b>4.</b> ) 🔅	\$ <b>.</b> 6	. Se	<0.05			gest∰ter.	<b></b> .	-0.05	0.26	0.29
Manganese, Diss.	Mangenesio, Dis.		-	0.58	<del>.</del>	-	⊲0.05		-	-	-	<b>&lt;0.05</b>	<0.05	⊲0.05
Bicarbonnie, Dies.	Bicartinente, Dis.	- 1 <b>-</b> 21	. <b>.</b> .	<b>.</b>	옷은 눈옷을	je ferdel	14	한 친구들 것이 같이 많이		- <b>-</b> -	_	9	9	46
Carbonate, Diss.	Carbenato, Dis.		-	<1	-	-	_ <i< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td><i< td=""><td>&lt;1</td><td>&lt;1</td></i<></td></i<>	-	-	-	-	<i< td=""><td>&lt;1</td><td>&lt;1</td></i<>	<1	<1
Chloride, Dies.	Clandes, Dis.	-	-	うなが	<b>.</b>	38. <b>4</b> .87	7.2	<b>.</b>	<b></b>	· 🖬 ·	-	0.38	0.6	3.6
Sulphate, Diss.	Sulfate, Die.	-	-	0.9	-	-	1	-	-	-	-	0.2	2.7	3.1
Oil and Grame by IR	Acette y Grana por IR	0.5	-0.2	-9.2	4.2	-0.2	-40.2	1.0	<0.2	<0,2	0.5	1040	0.3	0,5
Alkaliaity, T. == (CaCO3)	Alcalinidad, T. (CaCOJ)	-	-	36	-	~	12	-	-	-	-	7	7	38
	Dursen, T. (CoCQ3)		k <b>a</b> nd	<b>. n</b>		8.0 <b>4</b> 0.0	35		n an tha that the second s	•	~	~6	4	32
Total Dissolved Solids (.45µm)	Solidos Totales Disueltos (.45µm)	-	-	60	••		165	_	-	-	_	430	150	190
Balance	Belence	usetti sid <b>m</b> ilika		0.93	a streggi 		2.28	, <b>19</b>	a a sa ƙwar ta T <b>er</b>	8 ( <mark>.</mark>		0.60	0.67	0.98

Notes: All values are reported in mg/L unless otherwise stated; T. - total; Diss. - Dissolved.

Notas: Todas las unidades son reportadas en mg/L a menos de ser indicado diferente; T - total; Dis. - Disuelto.

Report reviewed by: **ה** Marie England **QA/QC** Compliance Environmental Services

NRayhald LeBlanc, Manager Sc. Manager Environmental Services 

**An Samples Will Be Disposed Alter 30 Days Following Analysis. Picase Contact The Cab II You Regime: Additional Sample Storage Time (Samples Deemed Hazardous Will Be Refurned To The Client At Their Own Expense Or Disposal Will Be Arranged) ** **SAGRA** Earth & Environmental Group

CA1069819

ъC

DENTIAL 041072

Engineering & Environmental Services

#### Table 7.3. Summary of water quality data for rivers and streams in the Petroecuador - Texaco Oriente Olifields, June 1993.

	- <u></u>			Shushufindi Arus Rico								Page 1 of 2	
		Crite	lity Criteria rio de				Shushufindi		<u></u>		Agua Rico	See	<u>cha</u>
		Cualidad Drinking	de Agua Aquatic	RIU	RJd	R4d	RSU	R6d	R74	REU	R10d	R144	R164
ike	Sitio	Bebide	Life Vida										
arameter	Parametros		Aquatica	1									
emperature (*C)	Temperatura (°C)			24.0	23.0	24.0	25.0	25.0	24.0	24.0	22.0	23.0	23.5
El-field (units)	elf-compo (unidades)	609.0	4.0-9.0	- K.55 -	6.04	7.30	5.86.835	1.93	6.22	6.53	7.04	7.31	7.19
H (units)	pH (unidades)	6.0-9.0	4.0-9.0	7.61	7.01	7.10	7.16	7.07	7.16	7.27	7.63	7.18	7.22
pocific Conductance-flaid (mS/cm)	Conducto Espetifico campo (mS/cm)			0.23	8 0.85 A 8	0.70	osti <b>0.26</b> 1 ()	0.23	0.29	0.30	0.30	0.26	0.29
pecific Conductance (mS/cm)	Conducto Específico (mS/cm)	1 60 A 14 - 21 Mar.		0.11	0.64	0.65	0.08	0.07	0.04	0.09	0.11	0.096	0.15
laselved Ozygen (field)	Oxigono Disusito	て動活動	>5.0	ing states	e contraction	90 - LAN		So So	o Notes		·.		
urbidity NTU	Turblas NTU	100		1 11	6.4	16	2.1		39	21	100	19	9.3
alour (true)	Color (verdedere)	20 <b>20</b> 10		1 ( Sec. 16 🖄	98 <b>(</b> 1888)	12	20	<b>17</b>	21	19	<b>7</b>	. D .	19
alctum, Dim.	Calcie, Dis.	75	75		17	20	5.2	4.8	5.2	5.4	13	5.0	8.3
Ingmentum, Diss.	Magnetes, Dis	1. <b>10</b> an	faller <b>50</b>	3.9	o • • • • • • • • • • • • • • • • •	24	99. <b>25</b> 9	23	2.5	. 27	1.2	2.5	2.9
stassium, Diss.	Potasie, Dis.			1.4	3.9	3.9	1.3	1.3	1.5	1.6	1.3	1.9	2.4
iedhum, Dini.	Sedia, Dis.		ې د مېرند وله د د د د د د د د د د د د د و د د ورد و	1. S. S. S.	<b>11</b>		(† 1. <b>†</b> 1868)	<b>.</b>	2	- 1 <b>4</b>	2	- 3	
ron, T.	Hierre, T.	0.3	0.3	1	1.3	1.4	Ľ	1.2	1.4	1.4	1.2	0. L	0.1
fingettin, Dist.	Manganasia, Dis.	0.5	0.1	<b>40.05</b>	<0.05	-9.05	<0.05	< <b>4.05</b>	<0.05	<0.05	- <b></b>	<0.05 °	<0.05
icarbonate, Diss.	Bicarbonate, Dis.	100		57	63	62	43	37	39	45	48	37	50
arbenet, Dim.	Carbours, Dis.	50		4	4	4		< 1	ব	<t< td=""><td>&lt;1</td><td>i &lt;1</td><td>4</td></t<>	<1	i <1	4
bioride, Diss.	Clorudes, Dis.	250	1000	0.8	150	155	0.7	0.9	0.6	0.8	2.5	1.1	9.0
dynate, Dins.	Salfaire, Die.	500	\$00	ः १३		- 11	0.6	0.6	1.6	1 <b>1 1</b> 1 1	5.1	0.7	0.6
initiaty, T. as (CaCO3)	Alcalinidad, T. (CaCO3)	250		47	52	50	35	30	32	37	40	30	41
landaen, T. as (CoCOJ)	Durus, T. (CsCOS)	2.99		S 36 S			23	(2 <b>4</b> ) - 2	23	25	37	23	33
Total Suspended Solids	Selldes Suspendidos (Lotal)	Absorat		27	65	210	105	16	60	410	260	<b> 6</b>	276
Fotal Dimetred Solide (.45pm)	Solidan Totales Disseltos (.45µm)	1000		92	ing 🖓 365 🚲	364	iç <b>n</b> : ⊺	<b>\$0</b>	- 83	73	77	84	93
TPH (C\$-C30)	THIP (CS-C34)	1.0	1.0	0.9	2.4	1.7	2.7	3.9	3.1	3.3	2.5	0.3	0.4
Innie Balance	Balance de Jones			0.985	0.951	0.947	0.912	0.919	0.856	0.902	0.900	0.973	0.978

Notes: Water Quality Criteria for surface waters taken from the contract document; all values are reported in mg/L unlose otherwise stated; T. - total; TPH - Total Petroloum Hydrocarbons; Diss. - Dissolved; R - River; U - Upstream (control) site; d - downstream of efficient discharge point.

Dissolved corrupts concentrations in rivers and streams ranged from 4.0 to 6.0 mg/L in June (personal communication with Roy Roberts of Fugro McClelland).

Notas: Critorio de Cualidad de Agua para las aguas del suporticio sacados de los documentos del contrato; todas las unidades son reportadas en mg/L a manos de sor indicado diferente; T-Total; THP-Total del Hidocaburo de Potroleo; Din.-Disuleto; R-Rio; U- Agua arriva (control) silio; d- Agua abajo del punto de descarga del effuense. PET 041073

Las concentraciónes dal Oragono Disentito en los rins y arroyos fluctin de 4.0 a 6.0 mg/L en Junio (comunicación personal con Roy Roberts de Fugre McClelland).

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

Earth & Environmental Group

-- All Samples Will Be Disposed After 30 Days Fullowing Analysis. Please Contact The Lab It You Require Additional Sample Slorage Time (Samples Deemed Hazardous Will Be Returned To The Client At Their Own Expense Or Disposal Will Be Arranged **

**TECHNICAL REPORT** 

Engineering & Environmental Services

Table 7.3 Cont'd. Summary of water quality data for rivers and streams in the Petroecuador - Texaco Oriente Oilfields, June 1993.

													_	Page 2 of 2
	T	Water Qua	lity Criteria	8	lacha	Cononaco	Auca		Анса			Lago	Agrio	
		Crtte	rio de											
	<b>,</b>	Cualidad	l de Agua	ļ										
		Drinking	Aquatic	R17U	<b>R18</b> U	R24U	R26d	R28U	R29d	R30U	R32d	<b>R33</b> U	<b>R35</b> U	R364
			Life											
Site	Sitio	Behido	Vida	1										
Parameter	Parametros		Aquatica											
Temperature (*C)	Temperaturn (*C)	1	1	23.5	24.0	25.0	24.5	24.0	26.5	23.5	25.0	21.0	24.0	25.0
pEi-floid (units)	pii-campo (unidadas)	6.0-9.0	4.0-9.0	7,03	6.78	7.40	6.91	6.93	7.33	7.80	7.05	7.80	6.18	5.94
pH (units)	pH (unidades)	6.0-9.0	4.0-9.0	7.19	7.39	7.17	6.74	6.93	7.12	6.70	7.00	7.29	7.58	7.53
Specific Conductance-field (mS/cm)	Conducto Especifico campo (mS/cm)			0.27	0.32	0.20	0.68	0.14	0,58	Q.13	0.20	Q.15	0.17	1.25
Specific Conductance (mS/cm)	Conducto Especifice (mS/cm)			0.11	0.16	0.05	0.62	0.04	5.04	0.02	0.12	0.10	0.09	1.23
Dissolved Oxygen (field)	Osigone Dissuite	1488 C	>5.0	1 ¹	1		5. A. S. M.	tha in	See Notes					
Turbidity NTU	Turbian NTU	100		8.4	2.1	17	2.1	4.2	4.2	6.5	70	40	6.9	7.8
Colour (true)	Caler (verdedero)	20	$\{ i_1, \ldots, i_n \}$	20	. S. 15 .	5	- <b>3</b> .	19 a <b>17</b> -	14	5	13	7	16	20
Calcium, Dim.	Calcia, Dis.	75	75	6.8	9.6	3.3	9.8	2.1	64	0.6	8.7	10	6.8	56
Megnatium, Diss.	Magnesia, Dis.	50	<b>50</b>	S 2.8	- 8 - <b>4.5</b> ° ,	20	1.9	0.8	: 10	0.5	3.3	1.2	3.0	5.3
Potarsium, Diss.	Petasis, Dia.			1.8	1.9	1.1	2.4	1.6	24	0.5	3.2	1.1	1.7	18
Sodium, Diss.	Sedie, Dis.			▲ 1	<b>S</b>	3 1 3	<b>89</b>	2	895	2	5	2	4	142
Iran, T.	ISono, T.	0.3	0.3	0.1	⊴0.1	<b>4</b> .1	⊴0.1	⊲0.1	<0.1	<0.1	0.1	⊲0.1	0.2	0.1
Mangunese, Diss. and the second second	Mangaquela, Din.	1.0.5	01	- <b>- 0.05</b>	S0.05	<b>to.o&gt;</b>	<0.05	<0.05	0.059	<0.05	⊲0.05	<b>40.05</b>	⊲0.05	<0.05
Bicarbonate, Din.	Bicarbonate, Dis.	100		47	70	29	23	17	56	10	49	38	49	116
Carbonata, Dine and the age of the	Carbonata, Dis.	50	1315114	≪. <b>⊲</b> .	્ર ન	4 A A A A A A A A A A A A A A A A A A A	<ul> <li>4</li> </ul>	4	્ર	. <	<1	4	<	4
Chioride, Dies.	Clorudes, Dis.	250	1000	1.0	0.8	0.9	154	0.5	1600	0.2	2.2	1.4	1.4	278
Bulphote, Diss. "Seat of setting and the	Sulfite, Dis.	500	500	0.5	<b></b>		0.6	oj 💬 🖬 🝸	954 <b>1.6</b> N	. 0.5	1.0	. 3.7	0.6	6.6
Alialisity, T. as (CaCO3)	Alcalinidad, T. (CaCO3)	250	ł	39	\$7	24	19	15	46		40	31	40	95
Hardness, T. as (CaCQJ)	Durea, T. (CaCOJ)	250	l de la del	S 29 - 1	1 <b>4</b>	i 6 👘	32	9	201	. <b>4</b>	35	30	29	162
Total Suspended Solids	Selldes Suspendides (Intel)	Abeant		152	152	156	140	18	216	168	152	200	104	200
Total Disserved Salids (.45pm)	Sulidue Totales Dissultus (.45pm)	- : 1000	19 M.	34.83	1 <b>00</b> - 1	439 <b>63</b>	<b>. 360</b> (	<b>57</b>	2900	11	88	17	93	732
TPH (C5-C30)	THP (C5-C30)	1.0	1.0	0.3	⊲0.2	0.2	0.4	0.4	0.3	0.3	0.5	0.4	0.5	0.2
tenic Balance in 1993 128 - 2 Par	Balance de lones		1.11	0.976	0.945	0.954	: <b>0.967</b>	0.991	0.945	1.005	1.134	0.964	0.940	0.999

Notes: Water Quality Criterie for surface waters taken from the contract document; all values are reported in mg/L unless otherwise stated; T. - total; TPH - Total Petroleum Hydrocarbons; Dins. - Dimolved; R - River; U - Upstream (control) site; d - downstream of efficient discharge point.

Dissolved crygen concentrations in rivers and streams ranged from 4.0 to 6.0 mg/L in June (personal communication with Roy Roberts of Fugro McClolland).

Notas: Criterio de Caalidad de Agua para las aguas del superficio ancados de los documentos del contrato; todas las unidades sen reportadas en my/L a menos de ser indicado diferente; T-Total; THP-Total del Hidocaburo de Petroleo; Dis.-Dimieto; R-Rio; U- Agua antiva (control) nitio; d- Agua abajo del punto de descarga del efformte.

Las concentraciónes del Oxígeno Dimetto en los rios y arroyos fluctás de 4.0 a 6.0 mg/L en Junio (contralicón personal con Roy Roberts de Fugro McChella

CONFIDENTIAL PET 041074 CA1069821

Report reviewed by Marie Enlgand QA/QC Compliance **Environmental Services** 

faid LeBlanc Manager Environmental Services

**AGRA** Earth & Environmental Group

**All Samples Wal Be Dispused After 10 Days Following Analysis. Please Confact The Lab II You Hequine Additional Sample Storage Time (Samples Depixed Hazardous Will Be Reformed To The Coent At Their Own Expense Or Disposal Will Be Arranged) **

### APPENDIX H

.

# GEOLOGIC TEST PIT AND BORING LOGS

CONFIDENTIAL PET 041075

AGRA Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

. .

4

ĩ

l i

1

¢ ª

CA1069822

Ξ.

ť,

.

. تور

1

1

Ę

#### TEST PIT LOGS

Depth (meters)	Materials Encountered
<u>Shushufindi Estacion (</u> <u>Test Pit No. 1</u>	Central (SSF-STC)
0 - 1.4	Stiff, moist, moderately plastic, dark brown, silty CLAY. Carbon layer at 0.3 meters. color change to mottled dark brown and gray at 0.6 meters.
1.4 - 3.7	Stiff, moist, gray, silty SAND with strong petroleum odor.
3.7 - 3.8	Medium dense, saturated, gray, fine to medium grained, well sorted, SAND. Groundwater with heavy sheen infiltrating into test pit at 3.6 meters.
Test Pit No. 2	
0 - 0.9	Loose, moist, gray, medium grained SAND with Gravel and Cobbles.
0.9 - 1.5	Hard, damp, reddish brown, cemented fine to medium grained SAND.
1.5 - 3.2	Medium dense, moist to wet, unconsolidated fine to medium SAND. Sand becomes coarser at 2.1 meters. Groundwater infiltrating test pit at 2.7 meters. Slight sheen noted on the groundwater. Soil sample SSF-STC-TP2 collected at 2.4 meters. Water sample SSF-STC-TP2 collected from excavation.
Test Pit No. 3	
0 - 1.5	Medium stiff, moist, brown, plastic silty CLAY. Color change to dark brown at 1.1 meters.
1.5 - 1.9	Medium stiff, wet, dark brown, silty CLAY with sand.
1.9 - 2.3	Medium dense, saturated, fine to medium grained, silty SAND. Groundwater infiltrating test pit at 2.0 meters. No sheen or product noted on groundwater. Soil sample SSF-STC-TP3 collected at 2.4 meters. Water sample SSF-STC-TP2 collected from test pit.
Peizometer MW-1	
0 - 1.5	Medium stiff, moist, brown, plastic sity CLAY. Color change to dark brown at 1.0 meters.
1.5 - 1.9	Medium stiff, wet, dark brown, silty CLAY with sand.
	CONFIDENTIAL

Petroecuador June 29, 1993	O-6287 Page 2
1.9 - 2.0	Medium dense, saturated, silty SAND. Static water level in Peizometer at 0.942 meters from top of casing. Two inch PVC pipe used for casing. Casing slotted from 1.7 to 2.0 meters. No sand or gravel filter pack used. Water sample SSF-STC-MW1 collected from peizometer.
Shushufindi Estacion Norte (S Test Pit No. 1	<u>SF-STN)</u>
0 - 2.0	Stiff, damp, dark brown, Clayey SILT. Low plasticity.
2.0 - 2.6	Ferruginous hard pan layer. Hard, damp, reddish brown, cemented sandy SILT. The hard pan layer is fractured.
2.6 - 2.8	Unconsolidated dense, gray, fine grained SAND. No groundwater encountered. Sample SSF-STN-TP1 collected at 2.6 meters.
Test Pit No. 2	
0 - 0.3	Stiff, reddish brown, damp to moist, sitt CLAY.
0.3 - 2.8	Stiff, gray, fractured CLAY. Crude oil contamination noted at 0.3 meters. Globules of oil concentrated in fractures and root holes. Soil sample SSF- STN-TP2 collected from test pit at 2.0 meters.
<u>Shushufindi Estacion Sur (SSI</u> <u>Test Pit No. 1</u>	<u>STS)</u>
0 - 0.35	Medium grained SAND and GRAVEL. Perched groundwater at 0.35 meters.
0.35 - 3.5	Stiff, black, plastic, silty CLAY. Color changes to brown at 0.7 meters. Soil sample SSF-STS-TP1 collected at 3.5 meters.
Shushufindi Estacion Sur-Oea Test Pit No. 1	te (SSF-STSW)
0 - 0.05	Black Tar.
0.05 - 2.1	Brown, moderately plastic, silty CLAY.
2.1 - 3.1	Brown, moist, sandy SILT.
3.1 - 3.6	Gray, wet, silty SAND. Groundwater level at 3.24 meters below ground surface. Water sample SSF-STSW-TP1 collected from test pit.
Test Pit No. 2	
0 - 2.0	Brown, moderately plastic, slity CLAY.
2.0 - 3.0	Mottled brown, plastic, clayey SILT with iron concretions.
	CONFIDENTIAL PET 041077

CA1069824

CA1069824

.

---

O-6287 Petroecuador June 29, 1993 Page 3 Brown, wet, silty SAND. Groundwater encountered in test pit. Water 3.0 - 3.6 sample SSF-STSW-TP2 collected from test pit. Test Pit No. 3 Medium sand and gravel FILL 0 - 0.3 Reddish brown silty CLAY. Visibly contaminated soil noted between 1.0 0.3 - 3.0 and 3.0 meters. Water sample SSF-STSW-TP3 collected from test pit. Shushufindi Pozo A43 Test Pit No. 1 Medium Sand and Gravel FILL. 0 - 0.46 . Gray SAND with petroleum odor. 0.46 - 0.84 0.84 - 1.7 Reddish brown, silty CLAY. 1.7 - 3.24 Ferruginous hard pan. Hard, moist to wet, cemented fine SAND. No groundwater infitrated test pit. Soil sample SSF-43-TP1 collected at 3.04 meters. Test Pit No. 2 0 - 0.9 Medium sand and gravel FILL. Moist, reddish brown, siity CLAY. Soil sample SSF-43-TP2 collected at 2.0 0.9 - 2.0 meters. 2.0 - 2.4 Ferruginous hard pan. Hard cemented fine to medium grained SAND. Shushufindi Pozo B66 Test Pit No. 1 0 - 0.6 Medium Sand and Gravel FILL. Perched groundwater in fill. Stiff, moist, reddish brown silty CLAY. Becomes mottled reddish brown and 0.6 - 2.7 greenish brown with greater depth in test pit. Water sample SSF-66-TP1 collected from test pit. Test Pit No. 2 0 - 0.27 Wet, sandy gravel FILL. 0.27 - 1.6Stiff, damp, reddish brown, plastic silty CLAY. Color changes to gray at 1.2 meters. 1.6 - 3.0 Reddish brown CLAY.

CONFIDENTIAL PET 041078

1

4

:

. _____ =

O-6287 Page 4

<u>Shushufindi Pozo B71</u> <u>Test Pit No. 1</u>	
0 - 0.58	Medium Sand and Gravel FILL. Perched groundwater in fill.
0.58 - 2.7	Medium stiff to stiff, moist, plastic, reddish brown silty CLAY. Soil sample SSF-71-TP1 collected at 2.7 meters. Crude oil in fractures in clay above 1.6 meters. Color changes to mottled brown at 2.6 meters.
Test Pit No. 2	
0 - 0.38	Silty sand, FILL.
0.38 - 2.0	Reddish brown, fractured silty CLAY. Becomes less plastic with greater depth. Soil sample SFF-71-TP2 collected at 1.2 meters. Water sample collected from test pit.
Shushufindi Pozo B57 Test Pit No. 1	
0 - 0.4	Medium sity sand FILL
0.4 - 0.5	Medium SAND with gravel and cobbles. Petroleum odor noted.
0.5 - 2.7	Stiff, silty CLAY with crude oil in fractures. Iron concretions at 2.6 meters. Soil sample SSF-57-TP1 collected at 2.7 meters.
Test Pit No. 2	
0 - 0.34	Medium sand with gravel and cobbles, FILL.
0.34 - 3.0	Dark gray sity CLAY with very strong petroleum odor. Soil sample SSF-57- TP2 collected at 2.7 meters.
Test Pit No. 3	
0 - 0.33	Medium sand with gravel, FILL.
0.33 - 3.0	Reddish brown slity CLAY. Crude oil noted in fractures in the clay below 1.0 meters.
<u>Shushufindi Pozo A13</u> Test Pit No. 1	
0 - 0.4	Fine to medium sand and gravel FILL. Wood debris at base of fill. Perched groundwater in fill at 0.1 meters.
0.4 - 3.0	Mottled red and gray, very stiff, damp, low plasticity, silty CLAY. Soil sample SSF-13-TP1 collected at 3.0 meters.
	CONFIDENTIAL PET 041079

O-6287 Page 5

Test Pit No. 2	
0 - 0.5	Medium sand and gravel FILL.
0.4 - 3.1	Mottled red and gray, very stiff, moist to very moist, moderate plasticity, silty CLAY.
3.1 - 3.5	Mottled brown, stiff, wet, plastic, CLAY.
<u>Shushufindi Pozo A67</u> Test Pit No. 1	
0 - 0.5	Medium sand and gravel FILL. Perched groundwater in fill.
0.5 - 3.6	Black, moist, low plasticity, silty CLAY. Color changes to brown at 0.9 meters. Soil sample SSF-67-TP1 collected at 3.6 meters.
Test Pit No. 2	
0 - 0.5	Medium sand and gravel FILL. Perched groundwater in fill.
0.5 - 3.5	Brown to light brown silty CLAY. Pebbles within the clay at 3.0 meters.
Test Pit No. 3	
0 - 0.4	Medium sand and gravel FILL. Wood debris at base of fill. Perched groundwater in fill.
0.4 - 3.4	Black silty CLAY. Color changes to brown at 1.3 meters.
Ague Rico Pozo 3 Test Pit No. 1	
0 - 0.36	Medium sand and gravel FILL Perched groundwater in fill. Petroleum sheen on the groundwater.
0.36 - <b>2.38</b>	Dark brown, silty CLAY. Petroleum odor noted in soil at 2.0 meters. Soil sample AG9-TP1 collected at 2.0 meters.
2.38 - 2.6	Ferruginous hard pan. Hard, cemented fine SAND.
2.6 - 2.7	Unconsolidated, fine to medium grained SAND. Slight petroleum odor noted in sand. Water sample AG9-TP1 collected from test pit.
Test Pit No. 2	
0 - 0.35	Sandy gravel FILL.
0.35 - 1.0	Brown to gray sity CLAY. Groundwater with a heavy sheen encountered at 0.84 meters. Water sample AG9-TP2 collected from test pit.

CONFIDENTIAL PET 041080

CA1069827

.

O-6287 Page 6

	_
Test Pit No. 3	
0 - 0.37	Sand and gravel FILL.
0.37 - 2.5	Dark gray silty CLAY with a strong petroleum odor and visible crude oil in fractures. Oil flowing into hole at 1.8 meters.
Agua Rico Pozo 9 Test Pit No. 1	
0 - 0.5	Fine sand and gravel FILL.
0.5 - 2.0	Brown silty CLAY. Evidence of petroleum contamination noted in soil. Groundwater infiltrated test plt at 2.5 meters. Heavy sheen noted on groundwater.
2.0 - 3.0	Mottled brown clayey SILT. Soil sample AG-9-TP1 collected at 3.0 meters.
Test Pit No. 2	
0 - 0.58	Sandy gravel FILL. Logs at base of fill.
0.58 - 2.7	Dark brown silty CLAY. Color change to light brown at 1.84 meters. Collected soil sample AG9-TP2 at 1.0 meter. Groundwater infiltrated test pit. Water sample AG9-TP2 collected from test pit.
Agua Rico Pozo 10 Test Pit No. 1	·
0 - 0.26	Medium sand and gravel FILL.
0.26 - 2.54	Brown silty CLAY. Color change to light brown at 1.06 meters.
2.54 - 2.7	Unconsolidated, well sorted, medium grained SAND. Groundwater inflitrated test pit at 2.54 meters. Water Sample AG10-TP1 collected from test pit.
Test Pit No. 2	
0 - 0.4	Sandy gravel FILL.
0.4 - 1.0	Brown silty CLAY.
1.0 - 3.0	Brown, wet, clayey SILT with fine sand layers. Groundwater infiltrating test pit at 2.0 meters.
3.0 - 3.1	Mottled brown, saturated SILT. Soil sample AG-10-TP2 collected at 3.0 meters.
	CONFIDENTIAL PET 041081

CA1069828

.

2

· .

-

٤.

इ.स इ.स

j.

*

Ţ

•

-

)

۲. • O-6287 Page 7

Test Pit No. 3	
0 - 0.4	Sand and gravel FILL
0.4 - 1.75	Brown, very plastic silty CLAY. Groundwater infiltrating the cavity at 1.75 meters at a fast rate.
1.75 - 2.7	Sandy SILT with Clay.
2.7 - 3.0	Brown SILT. Groundwater infiltrating from multiple zones within silt. Water sample AG10-TP3 collected from test pit.
<u>Sacha Estacion Central</u> Test Pit No. 1	
0 - 0.5	Organic rich, dark brown top soil.
0.5 - 1.3	Dark brown silty CLAY.
1.3 - 2.3	Ferruginous hard pan. Reddish brown, hard, cemented fine sand.
2.3 - 4.4	Gray, unconsolidated, saturated, medium grained SAND. A small quantity of groundwater infiltrating test pit at 3.4 meters.
Test Pit No. 2	
0 - 0.3	Organic rich, dark brown topsoil.
0.3 - 0.4	Medium SAND with cobbles.
0.4 - 1.1	Dark reddish brown, moist to wet, silty CLAY.
1.1 - 1.8	Ferruginous hard pan. Hard cemented fine SAND. Water sample SA-STC- TP2 collected from test plt.
1.8 - 3.8	Gray, unconsolidated, saturated, medium grained SAND. Groundwater encountered at 2.9 meters.
Test Pit No. 3	
0 - 0.6	Dark brown silty CLAY.
0.6 - 1.2	Ferruginous hard pan.
1.2 - 3.0	Gray medium grained SAND.
3.0 - 4.5	Reddish brown, wet, plastic, fine sandy CLAY with weathered rock fragments.

(CONFIDENTIAL PET 041082

CA1069829

_____

O-6287 Page 8

4.5 - 5.0	Reddish brown, cemented medium SAND. No groundwater encountered in test pit. Soil sample SA-STC-TP3 collected at 5.0 meters.
<u>Sacha Estacion Sur</u> <u>Test Pit No. 1</u>	
0 - 1.6	Brown, moist, plastic, silty CLAY. Becomes saturated at 1.0 meters. Water infiltrating the test pit at a fast rate.
1.6 - 3.8	Mottled reddish brown and gray silty CLAY. Water sample SA-STS-TP1 collected from test plt.
Test Pit No. 2	
0 - 0.2	Black silty CLAY with cobbles. Petroleum odor noted in soil.
0.2 - 3.0	Reddish brown silty CLAY. Color change to dark grayish brown at 1.5 meters. Collected soil sample SA-STS-TP2 at 1.0 meter.
Peizometer MW-1	
0 - 1.6	Brown, moist, stiff, CLAY. Becomes wet at 0.8 meters and becomes saturated at 1.5 meters. Color change to mottled reddish brown and gray 1.6 meters. Static water level in Peizometer at 0.600 meters from bottom of peizometer. Two inch PVC pipe used for casing. Casing slotted from 1.3 to 1.6 meters. No sand or gravel filter pack used. Water sample SA-STS-MW1 collected from peizometer.
<u>Sacha Estacion Norte 1</u> <u>Test Pit No. 1</u>	
	Dark gray to black slity CLAY. Medium sand FILL and discarded drum in portion of the test plt.
Test Pit No. 1	
<u>Test Pit No. 1</u> 0 - 2.2	portion of the test plt. Brown, moist slity CLAY. Crude oil noted in fractures and root holes between 3.2 and 4.6 meters. No groundwater encountered in test plt. Soil
<u>Test Pit No. 1</u> 0 - 2.2 2.2 - 4.6	portion of the test plt. Brown, moist slity CLAY. Crude oil noted in fractures and root holes between 3.2 and 4.6 meters. No groundwater encountered in test plt. Soil
<u>Test Pit No. 1</u> 0 - 2.2 2.2 - 4.6 <u>Test Pit No. 2</u>	portion of the test plt. Brown, moist silty CLAY. Crude oil noted in fractures and root holes between 3.2 and 4.6 meters. No groundwater encountered in test plt. Soil sample SA-STN1-TP1 collected at 3.5 meters.
<u>Test Pit No. 1</u> 0 - 2.2 2.2 - 4.6 <u>Test Pit No. 2</u> 0 - 0.3	portion of the test plt. Brown, moist slity CLAY. Crude oil noted in fractures and root holes between 3.2 and 4.6 meters. No groundwater encountered in test plt. Soil sample SA-STN1-TP1 collected at 3.5 meters.
<u>Test Pit No. 1</u> 0 - 2.2 2.2 - 4.6 <u>Test Pit No. 2</u> 0 - 0.3 0.3 - 0.4	portion of the test plt. Brown, moist slity CLAY. Crude oil noted in fractures and root holes between 3.2 and 4.6 meters. No groundwater encountered in test plt. Soil sample SA-STN1-TP1 collected at 3.5 meters. Topsoli. Sandy Slit with blocky texture.
<u>Test Pit No. 1</u> 0 - 2.2 2.2 - 4.6 <u>Test Pit No. 2</u> 0 - 0.3 0.3 - 0.4 0.4 - 0.8	portion of the test plt. Brown, moist silty CLAY. Crude oil noted in fractures and root holes between 3.2 and 4.6 meters. No groundwater encountered in test plt. Soil sample SA-STN1-TP1 collected at 3.5 meters. Topsoli. Sandy Silt with blocky texture. Dark gray silty SAND.

CONFIDENTIAL PET 041083

CA1069830

.

-

4.3 - 4.8	Mottled reddish brown and gray silty fine SAND. Water infiltrating test pit at 4.5 meters. Water sample SA-STN1-TP2 collected from test pit.
<u>Sacha Pozo 75</u> <u>Test Pit No. 1</u>	
0 - 0.4	Fine grained sand FILL with petroleum odor. Logs at the base of fill.
0.4 - 1.9	Dark gravish brown, stiff, plastic, moist silty CLAY. Color changes to reddish brown at 0.8 meters. Soil sample SA-75-TP1 collected at 1.0 meter.
1.9 - 3.3	Cemented fine SAND.
3.3 - 3.5	Reddish brown silty CLAY
Sacha Pozo 94 Hand Auger Boring BH-1	
0 - 0.3	Sand and gravel FILL
0.3 - 0.6	Gray medium sand FILL. Perched groundwater within fill.
0.6 - 1.5	Dark brown sitty CLAY.
1.5 - 1.7	Dark gray saturated SILT.
1.7 - 3.2	Light brown sitty CLAY. Water sample SA94-BH1 collected from boring.
Sacha Pozo 103 Peizometer MW-1	
0 - 2.7	Reddish brown, moist to wet, plastic, silty CLAY. Color changes to dark brown at 1.0 meters.
2.7 - 3.2	Dark gray, saturated, medium grained silty SAND. Static water level in Peizometer at 0.275 from bottom of peizometer. Two inch PVC pipe used for casing. Casing slotted from 2.9 to 3.2 meters. No sand or gravel filter pack used. Water sample SA103-MW1 collected from peizometer.
Auca Estacion Central Peizometer MW-1	
0 - 0.1	Gravish brown, fine SAND.
0.1 - 1.2	Reddish brown silty CLAY. Becomes saturated at 0.2 meters. Static water level in Peizometer at 0.890 from bottom of peizometer. Two inch PVC pipe used for casing. Casing slotted from 0.9 to 1.2 meters. No sand or gravel filter pack used. Water sample AU-STC-MW1 collected from peizometer.

CONFIDENTIAL PET 041084

O-6287 Fage 10

T

F

#### Hand Auger Boring BH-2

0 - 2.7	Mottled red and gray, moist sandy clay FILL. Soil sample AU-STC-BH2 collected at 2.5 meters.
2.7 - 3.2	Gray, moist clayey sand FILL. No groundwater encountered. Soil sample AU-STC-BH2 collected at 3.2 meters.
Hand Auger Boring BH-3	
0 - 0.8	Dark red and gray, moist silty CLAY.
0.8 - 1.2	Gray, sandy CLAY. Becomes wet at 1.0 meters.
1.2 - 1.6	Reddish brown sitty CLAY. Soil sample AU-STC-BH3 collected at 1.5 meters.
Auca Estasion Sur Hand Auger Boring BH-1	
0 - 2.2	Light red and gray, moist, silty SAND. Moderate petroleum odor noted. Color change to yellowish brown at 0.7 meters. Soil sample AU-SiTS-BH1 collected at 2.2 meters.
2.2 - 2.3	Reddish brown, moist, silty SAND with clay.
Hand Auger Boring BH-2	
0 - 0.3	Red, saturated, CLAY. Water flowing from seep in embankment.
0.3 - 0.5	Moist, gray sandy CLAY. Soil sample AU-STS-SS1 collect at 0.3 meters. Water sample AU-STS-SS1 collected from seep near boring.
Auca Pozo 7 Soil Profile in Trench	
0 - 0.6	Black, sandy gravel FILL. Hydrocarbon odor noted in fill.
0.6 - 1.0	Reddish brown and gray silty CLAY. Soil sample AU-7-SS1 collected at 1.0 meters, sample AU-7-SS2 collected at 0.6 meters just below contact with fill.
Cononaco Estacion Central Hand Auger Boring BH-1	
0 - 0.3	Light brown clayey SAND.
0.3 - 0.9	Mottled light brown and gray, plastic, moist to wet sandy CLAY. Soil sample CON-STC-BH1 collected at 0.8 feet. Refusal at 0.9 feet.
	CONFIDENTIAL PET 041085

CA1069832

10.5

*

1

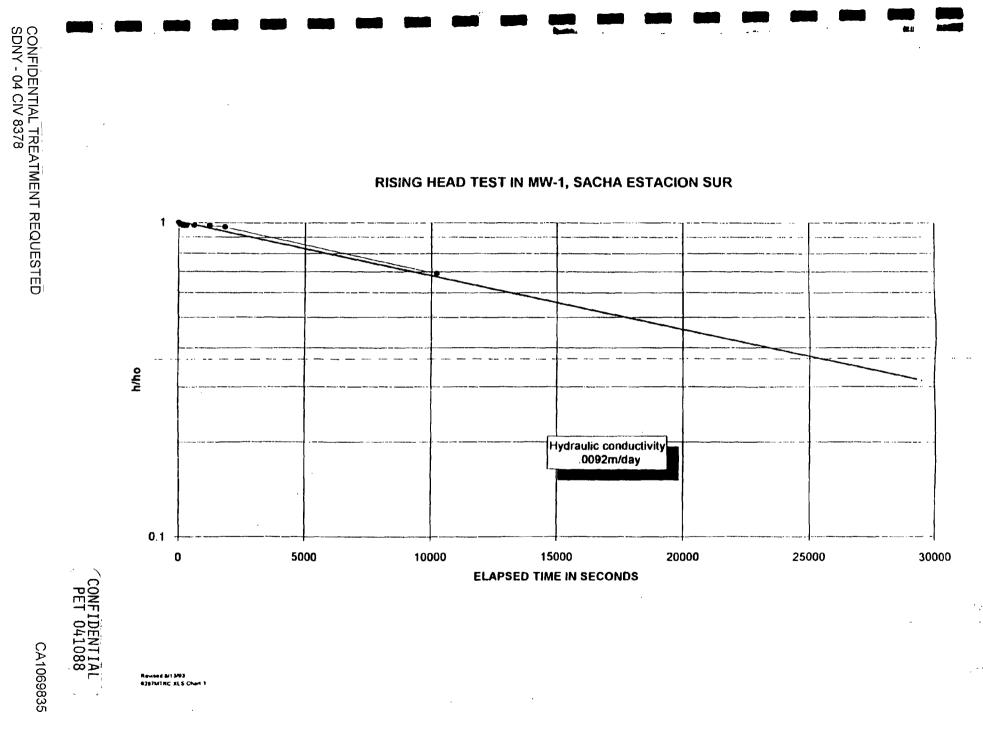
þ

į

•

Hand Auger Boring BH-2	
0 - 3.0	Reddish brown, moist, moderately plastic silty CLAY. Soil sample CON- STC-BH2 collected at 2.8 meters.
Lago Agrio Estacion Central Hand Auger Boring BH-1	
0 - 0.75	Mottled dark brown and red, stiff, plastic, damp to moist silty Clay FILL
0.75 - 2.2	Gray Sandy day FILL
2.2 - 2.4	Buried top soil horizon. Mat of roots, decayed grass, and wood debris encountered. Refusal at 2.4 feet. Composite soil sample LA-STC-BH1 collected from between 0.75 and 2.4 meters.
Hand Auger Boring BH-2	
0 - 0.1	Dark gray medium SAND.
0.1 - 0.7	Red, moist, plastic sitty clay FILL.
0.7 - 2.2	Gray fine grained silty sand FILL Black ash streaks within sand. Soil sample LA-STC-BH2 collected at 1.0 meter.
2.2 - 2.3	Sandy SILT with clay.
<u>Lago Agrio Estacion Norte</u> <u>Test Pit No. 1</u>	
0 - 0.3	Gray medium sand with cobbles - FILL Logs at the base of fill.
0.3 - 1.5	Reddish brown to gray sility CLAY. Black organic or oily layer at 0.75 meters.
1.5 - 2.55	Gray, cemented, medium grained silty SAND. Silty clay layers in sand between 1.7 and 2.55 meters.
2.55 - 4.5	Reddish brown, plastic, moist, sitty CLAY. Thin lense of petroleum hydrocarbon contamination at 2.8 meters. Color change to dark brown at 4.1 meters. Soil sample LA-STN-TP1 collected at 4.5 meters. Groundwater seeping into test plt at 2.8 meters.
Test Pit No. 2	
0 - 3.2	Reddish brown silty day FILL. Color change to dark brown at 0.45 meters and dark yellowish brown at 2.0 meters. Tree trunks and roots noted at between 2.0 and 3.2 meters. Groundwater encountered at 3.0 meters. Soil sample LA-STN-TP2 collected at 3.2 meters.
	CONFIDENTIAL PET 041086

Petroecuador June 29, 1993 O-6287 Page 12


Lago Agrio Pozo 1 Test Pit No. 1	· ·
0 - 0.3	Gray medium grained sand with cobbles - FILL.
0.3 - 1.0	Gray fine SAND
1.0 - 1.8	Reddish brown and gray silty CLAY with blocky structure.
1.8 - 1.9	Gray, saturated clayey SILT. This soil horizon yielded a small quantity of perched groundwater.
1.9 - 4.0	Very dark brown, plastic, moist, silty CLAY. Reddish brown layer between 2.5 and 3.0 meters. Soil sample LA-1-TP1 collected at 1.9 meters.
Lago Agrio Pozo 32 Test Pit No. 1	
0 - 0.5	Gray medium grained sand with cobbles - FILL.
0.5 - 1.2	Reddish brown, plastic, moist, silty CLAY.
1.2 - 1.6	Dark brown, organic rich, saturated clayey SILT.
1.6 - 2.3	Brown, saturated, moderately plastic silty CLAY. Soil sample LA-32-TP1 collected at 3.0 meters. Groundwater collected from test plt.
Guanta Estasion	

Hand Auger Boring No. 1

0 - 2.4

Medium stiff to soft, damp to saturated, brown silty CLAY. Groundwater encountered at 2.4 meters. Soil sample GU-STC-BH1 collected at 2.4 meters.

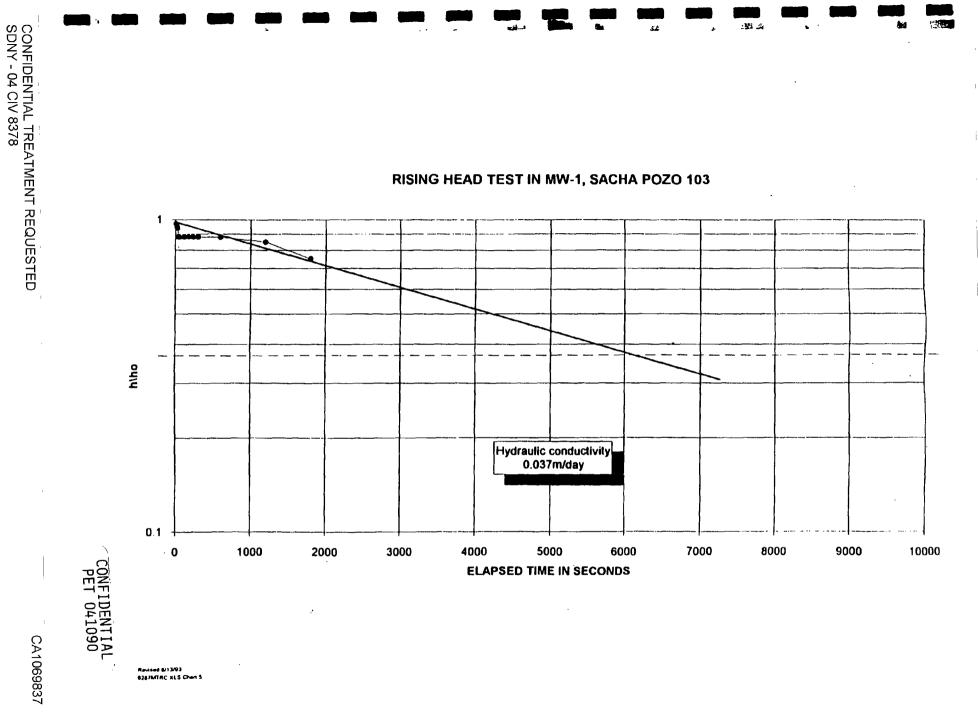
CONFIDENTIAL PET 041087



### Shusufindi Estacion Central MW-1 Slug Tost

.

Elapsed Time	Depth to Water (measured from bottom of casing - meters)	Change in Water Level h (meters)	h/ho
	0.942		
30	0.36	0.582	1
80	0.412	0.53	0.91
120	0.452	0.49	0.84
180	0.49	0.452	0.78
240	0.531	0.411	0.71
300	0.56	0.382	0.66
600	0.7	0.242	0.42
900	0.785	0.157	0.27
1200	0.85	0.092	0.16
1800	0.91	0.032	0.05


Revises 8/13/93 6287MTRC XLS



CA1069836

CONFIDENTIAL PET 041089 CA1069836

Í



### Sacha Pozo 103 MW-1 Slug Test

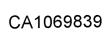
Elapsed Time	Depth to Water (measured from bottom of casing - meters)	Change in Water Level h (meters)	h/ho
	0.275		
0	0.11	0.165	
15	0.115	0.16	0.97
30	0.12	0.155	0.94
45	0.13	0 145	0.88
60	0.13	0.145	0.88
120	0.13	0.145	0.88
180	0.13	0.145	0.88
240	0.13	0.145	0.88
300	0.13	0.145	0.88
600	0.13	0.145	0.88
1200	0.135	0.14	0.85
1800	0.152	0.123	0.75
3540	0.282	0	

Revised 8/13/93 6287WTRC.XLS

.

CA1069838

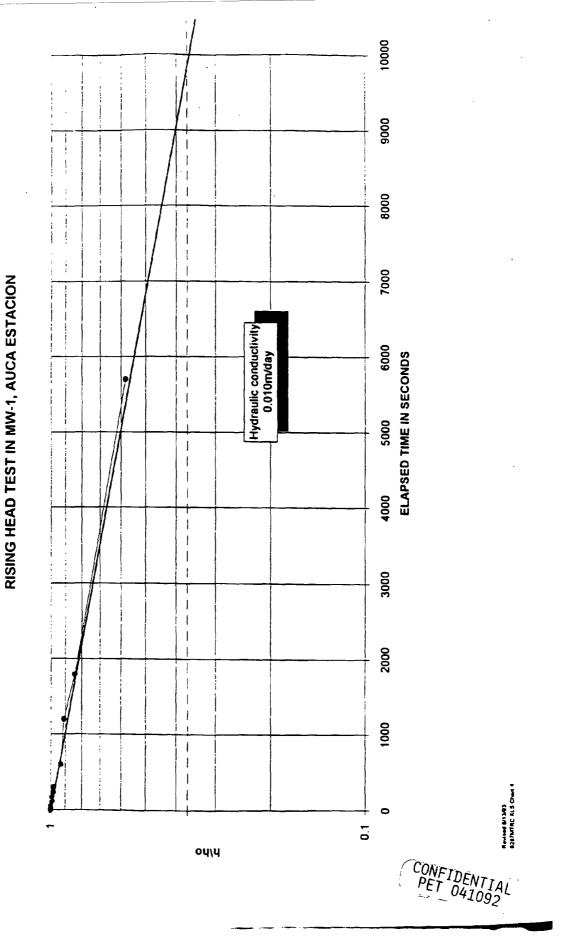
CA1069838


CONFIDENTIAL PET 041091

. . . .

I.

-


τ



CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

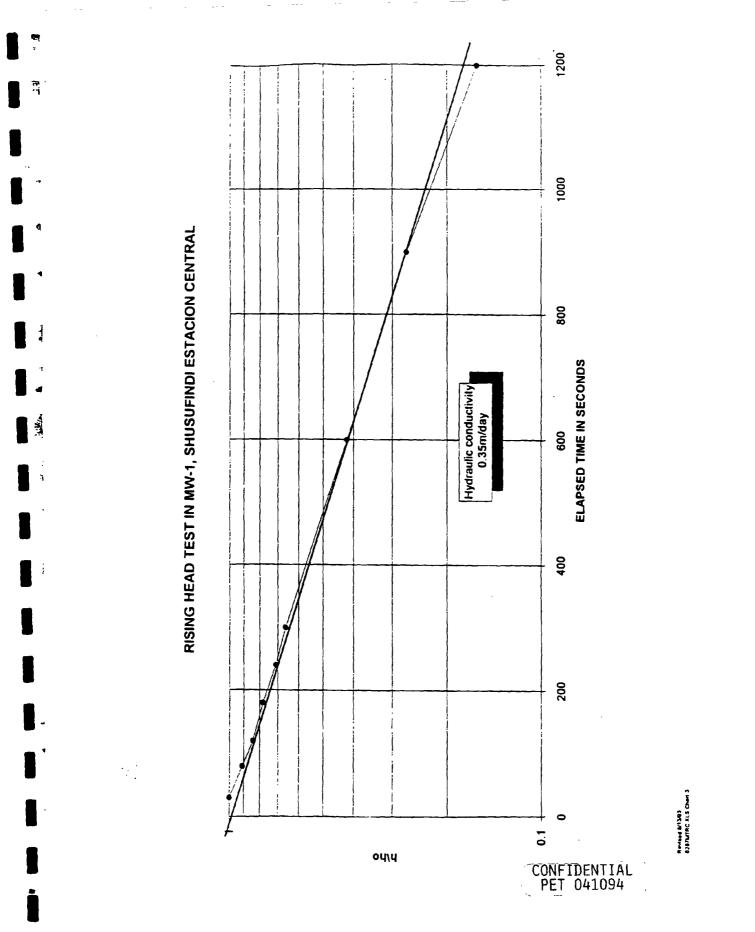
•





### Auca Estacion MW-1 Slug Test

Elapsed Time	Depth to Water (measured from bottom of casing - meters)	Change in Water Level h (meters)	h/ho
	0.89		
. 0	0.6	0.29	1
15	0.6	0.29	1
30	0.6	0.29	1
45	0.6	0.29	1
60	0.6	0.29	1
120	0.603	0.287	0.99
180	0.604	0.286	0.99
240	0.605	0.285	0.98
300	0.605	0.285	0.98
600	0.62	0.27	0.93
1200	0.626	0.264	0.91
1800	0.645	0.245	0.84
5700	0.722	0.168	0.58
23400	0.925	0	

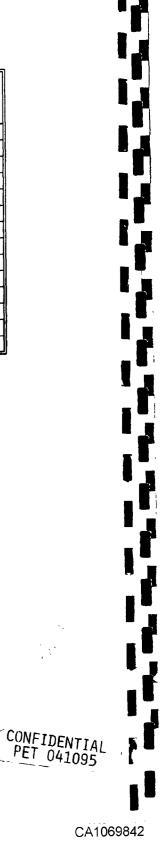

Revised 8/13/93 6287MTRC.XLS

CA1069840

CONFIDENTIAL PET 041093

Ĭ

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

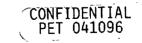



CA1069841

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

#### Sacha Estacion SU5 MW-1 Slug Test

Elapsed Time	Depth to Water (measured from bottom of casing - meters)	Change in Water Level h (meters)	h/ho
	0.6		
0	0.12	0.48	1
15	0.121	0.479	1
30	0.122	0.478	1
45	0.124	0.476	0.99
60	0.126	0.474	0.99
120	0.128	0.472	0.98
180	0.13	0.47	0.98
240	0.13	0.47	0.98
300	0.131	0.469	0.98
600	0.132	0.468	0.98
1200	0.132	0.468	0.98
1800	0.133	0.467	0.97
10200	0.265	0.335	0.69




Revised 8/13/93 6287MTRC XLS

## **APPENDIX I**

----

## RECOMMENDED DISPOSAL CRITERIA FOR OILY WASTES



AGRA Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

.

..

1

. 7

.

CA1069843

### RECOMMENDED DISPOSAL CRITERIA FOR OILY WASTES

Oily waste material and fluids may be applied to road surfaces if the following characterization criteria can be met and alternate practical technologies are not readily available.

No free water.

The hydrocarbon content must be equal to or greater than 5 percent as a calculated mix. The oil should be of a relatively high density.

pH ≥ 6.

. :

Total salts:

• Na  $\leq$  5 500 kg/ha,

• chloride  $\leq$  7 000 kg/ha.

Total metals:

Cd ≤ 1.6 kg/ha,
Hg ≤ 1.0 kg/ha,
Pb ≤ 200 kg/ha,
Ni ≤ 100 kg/ha,
V ≤ 150 kg/ha,

•  $B \leq 20$  kg/ha.

Other data required in the analysis but which are not part of the criteria are specific conductance and density of sample.

The material must not contain halogenated hydrocarbons, hazardous chemicals, refined or lube oils or deleterious substances such as filters, rags, vegetation or other debris.

The maximum depth of application of material is limited to the smallest of the "Calculated Application Depths" determined for all parameters using the following formula:

$$d(cm) = \frac{Lx10^4}{DxC}$$

where: d

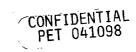
L

= depth (cm) - calculated.

= loading rate (kg/ha) - specified in sections 2.4 and 2.5 for each parameter.

D = density of sample (kg/m³) - determined by laboratory.

C = concentration (mg/kg) - determined by laboratory.


Source:

ERCB General Bulletin GB92-10

CONFIDENTIAL PET 041097

## APPENDIX J

# PHASE I ASSESSMENT PHOTOGRAPHS



**AGRA** Earth & Environmental Group

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

•

à

ţ

:

.

.

CA1069845

### LIST OF PHOTOS

····· ······ ····

- - -

Photo J-1	Reproduction of 1:60,000 scale airphoto showing surface disturbances related
	to oil field development. Production stations (Sacha Central and North #1),
	well sites, access roads and agricultural land use are present. Erosion at well site CN11.
Photo J-2	Erosion at former pit location adjacent well site GU5.
Photo J-3	- ·
Photo J-4	Flowlines and roads are often present in the same corridor throughout the concession.
Photo J-5	Many of the well sites in the concession are equipped with a transformer, flowline and meter station. Corrosion inhibiters are often injected at the well site.
Photo J-6	Numerous flowlines from nearby well sites converge at the Lago Agrio North production station.
Photo J-7	Produced fluid spill has stained the pad at well site GU8. Dwellings are often located adjacent well sites.
Photo J-8	Flowline related spill at well site AU5. Sand has been used to cover a portion of the spill.
Photo J-9	Used oil and filters have been discarded at a number of well sites.
Photo J-10	Domestic solid waste has been discarded at a number of well sites.
Photo J-11	Oil has been released to a stream during pit closure at well site SSFB64.
Photo J-12	Oil seep from covered pit at well site GU5.
Photo J-13	Oil and water containing pit at well site SSFB66.
Photo J-14	Discharge of oily waters from pit at well site SSFB66.
Photo J-15	Separators and process area sump at the Atacapi Production Station. Spills are typically covered with sand.
Photo J-16	Bermed surge tank at the Sacha North #2 Production Station.
Photo J-17	Pumping equipment is present at all production stations.
Photo J-18	A pump workover at the Shushufindi South Production Station resulted in used oil being discharged to a nearby river.
Photo J-19	Used oil spill adjacent the generator located at the Auca Sur Production Station.
Photo J-20	Flare failure at the Auca Central Production Station.
Photo J-21	Used oil spill below flowlines located adjacent the vehicle maintenance yard
	at the Sacha Central Production Station.
Photo J-22	Spilled oil adjacent the chemical storage yard at the Sacha Production Station.
Photo J-23	Oil skimming on produced water pit at the Sacha North #1 Production Station.
Photo J-24	Oil and water containing pit at the Parahuacu Production Station.
Photo J-25	Oily produced water discharge stream through farmyard adjacent Sacha
	North #2 Production Station.
Photo J-26	Produced water separation pits at Sacha Central Production Station.
Photo J-27	Dwelling located on secondary pipeline corridor.
Photo J-28	Road application of oil in the Sacha field.
	PET 041099

÷

----

U ...

L

Status and an an

CA1069846



Photo J-1: Reproduction of 1:60,000 scale airphoto showing surface disturbances related to oil field development. Production stations (Sacha Central and North #1), well sites, access roads and agricultural land use are present.



Photo J-2: Erosion at well site CN11.

CONFIDENTIAL PET 041100

l



Photo J-3: Erosion at former pit location adjacent well site GU5.



Photo J-4: Flowlines and roads are often present in the same corridor throughout the concession.

CONFIDENTIAL PET 041101

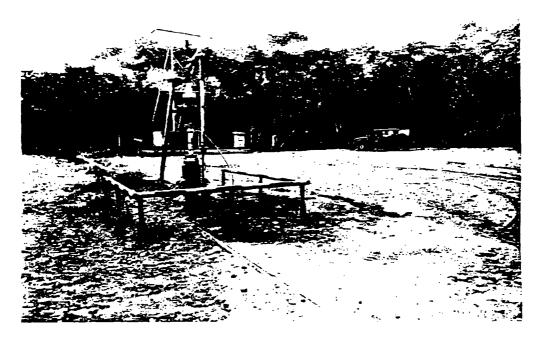



Photo J-5: Many of the well sites in the concession are equipped with a transformer, flowline and meter station. Corrosion inhibiters are often injected at the well site.

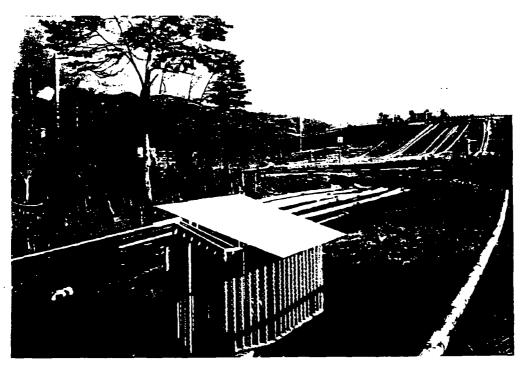



Photo J-6: Numerous flowlines from nearby well sites converge at the Lago Agrio North production station.

CONFIDENTIAL 041102 PET

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378



Photo J-7: Produced fluid spill has stained the pad at well site GU8. Dwellings are often located adjacent well sites.

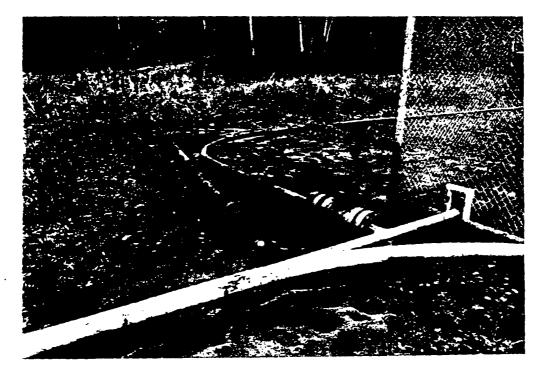



Photo J-8: Flowline related spill at well site AU5. Sand has been used to cover a portion of the spill.

CA1069850

1



Photo J-9: Used oil and filters have been discarded at a number of well sites.



Photo J-10: Domestic solid waste has been discarded at a number of well sites.

CA1069851

PET 041104

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

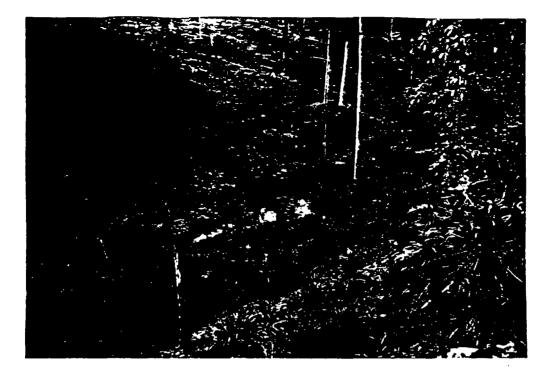



Photo J-11: Oil has been released to a stream during pit closure at well site SSFB64.

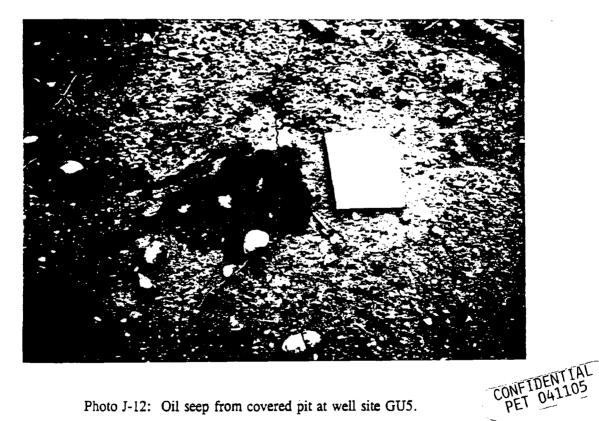



Photo J-12: Oil seep from covered pit at well site GU5.

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

1

1

CA1069852



Photo J-13: Oil and water containing pit at well site SSFB66.



Photo J-14: Discharge of oily waters from pit at well site SSFB66. CONFIDENTIAL PET 041106

I

I




Photo J-15: Separators and process area sump at the Atacapi Production Station. Spills are typically covered with sand.



Photo J-16: Bermed surge tank at the Sacha North #2 Production Station. CONFIDENTIAL PFT 041107

Î

I

I

CA1069854

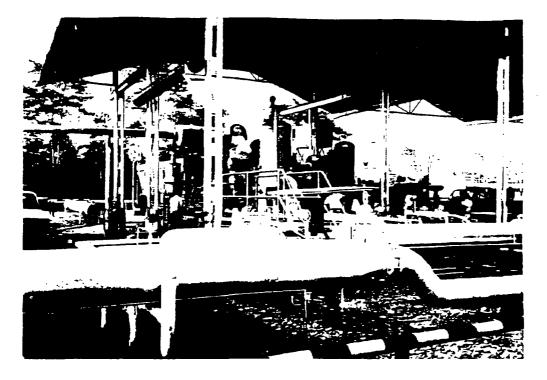
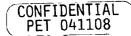




Photo J-17: Pumping equipment is present at all production stations.



Photo J-18: A pump workover at the Shushufindi South Production Station resulted in used oil being discharged to a nearby river.



CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

1

CA1069855

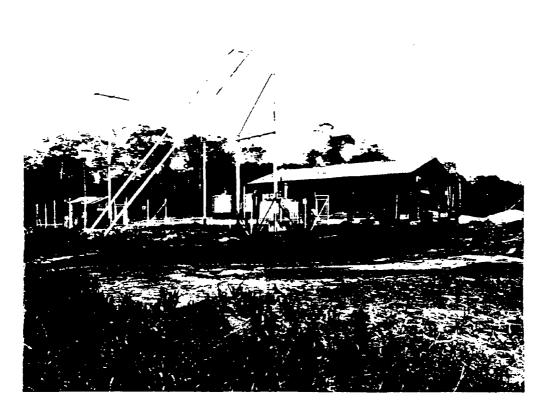



Photo J-19: Used oil spill adjacent the generator located at the Auca Sur Production Station.



Photo J-20: Flare failure at the Auca Central Production Station.

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

I

Î

CA1069856



Photo J-21: Used oil spill below flowlines located adjacent the vehicle maintenance yard at the Sacha Central Production Station.



Photo J-22: Spilled oil adjacent the chemical storage yard at the Sacha Production Station.

CONFIDENTIAL PET 041110

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378



Photo J-23: Oil skimming on produced water pit at the Sacha North #1 Production Station.



Photo J-24: Oil and water containing pit at the Parahuacu Production Station.

CONFIDENTIAL PET 041111

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378

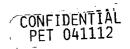

CA1069858



Photo J-25: Oily produced water discharge stream through farmyard adjacent Sacha North #2 Production Station.



Photo J-26: Produced water separation pits at Sacha Central Production Station.



CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378



Photo J-27: Dwelling located on secondary pipeline corridor.



Photo J-28: Road application of oil in the Sacha field.

CONFIDENTIAL PET 041113

CONFIDENTIAL TREATMENT REQUESTED SDNY - 04 CIV 8378 CA1069860